REVISED/ADDITIONAL DOCUMENTATION PART 7

2017SSH019

DA17/0467

1-21 Dillwynnia Grove, Heathcote

- ARCHITECTURAL DESIGN STATEMENTS – REVISED
- ARBORIST REPORT AMENDED
- CONSTRUCTION MANAGEMENT PLAN
- ENVIRONMENTAL SITE INVESTIGATION REPORT – DETAILED

HEATHCOTE HALL ARCHITECTURAL STATEMENTS

This document is to form part of the Development Application submission for the Historic Heathcote Hall, Heathcote, NSW

1 – 21 Dillwynnia Grove, Heathcote, NSW

Prepared by Ink Architects Pty Ltd

April 2017

Nominated Architect: Gustavo Thiermann 8527

inkarchitects pty ltd abn: 78 167 192 216 suite 2.02, 56 delhi road north ryde nsw 2113 po box 201 ryde NSW 1680 p: 02 9009 4400 f: 02 8580 6350 e: admin@inkarchitects.com.au

ARCHITECTURAL REPORTS

DESIGN STATEMENT

Introduction Design Principles The Development Proposal

SEPP 65 DESIGN VERIFICATION STATEMENT

Introduction Design Principles The Development Proposal

LIVABLE HOUSING REPORT Introduction Design Principles

The Development Proposal

Introduction

The Cultural significance of this site and the Heritage significance of Heathcote Hall have inspired our team to produce the best possible solution that integrates sustainability from an economic, social and environmental point of view.

A Conservation Management Plan has been prepared for this site of State Significance and its analysis and policy sections should be adopted in order to guide all future works.

A detailed site analysis prepared by GMU team has identified constrains and opportunities, creating a framework before we started exploring the preferred Masterplan options from an architectural point of view.

Step by step advice by Tasman Storey from Tropman Tropman Architects has guided this team during the preparation of the concept options through to the final development of the preferred design.

We are proposing extensive restoration and adaptive re-use works to Heathcote Hall as well as the gardens and curtilage in accordance with the guidelines described on the CMP. All changes, alterations and repairs must retain and respect as much as possible of the significant fabric and values of the space, structure or element. They should be positive and supportive of the significance of the element or precinct, and the place as a whole.

Design Principles

- Create a unique site specific proposal and architectural language that is sensitive to the existing built and natural features of the setting to achieve an integrated life style with the natural features of the site of "living amongst the trees"
- Create a responsive built form that stays below the tree canopies and Heathcote Hall, concentrating taller forms towards the centre of the site and away from the edges.
- Create a responsive built form of two storey dwellings around the perimeter respecting the residential character of the surrounding area achieving zero overlooking and overshadowing impact to the public domain.
- Respond to existing vegetation and reduce impact of excavation in proximity to mature landscape, enhancing through site links and vistas towards the Hall.
- Preserve and recreate significant views to Heathcote Hall by clearing undergrowth and strategically placing building clusters.
- Utilize the site's topography to allow the built form to cascade and adapt to the level changes providing landscape buffering between existing and proposed dwellings.
- Concentrate, minimise and capsulate vehicular entry points into the site.
- Celebrate the importance of Heathcote Hall in the placement of built form, arrival sequence, and open spaces

The development proposal

The proposed Development is concentrated in the areas described as Development Zones generally, avoiding any encroachment into the curtilage zone. The development is proposing low scale buildings facing Dillwynnia Grove along the South-West corner of the site, respecting site lines and visual connection from the Hall to the West. We are also proposing vehicular access to a Basement Carpark at the lowest level of the site, minimising visual impact. Carpark access is split between Dillwynnia Grove and Boronia Grove minimising vehicular impact on the existing road network.

The proposed Development respects the traditional access to the site via Boronia Grove and Dillwynnia Grove. These important connections to the Hall will be reinstated as pedestrian through site links allowing local residents to permeate through to the grounds and refurbished Hall and its future functions. Existing Blue Gums and Turpentine are to be protected during construction and will form part of the integrated Landscape Design.

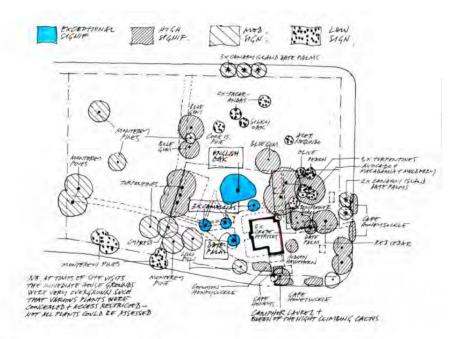


Fig 3.13 Site components - gradings of significance

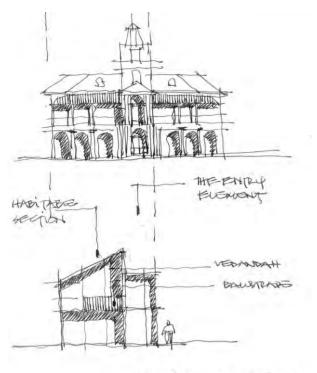
Streetscape planting will be retained along Boronia Grove and Dillwynnia Grove as proposed on figure 2.33 of the CMP. It is important to retain the existing natural characteristics of the site as well as providing scale and screening.

Existing English Oak, Camellias and Date Palm in the vicinity of the Hall should be protected during Construction and included in the proposed Landscape Plan as proposed in the CMP.

The landscape character of Dillwynnia Grove and the long embankment is retained and will remain as a strong topographic feature of the site. Universal

Nominated Architect: Gustavo Thiermann 8527

access to the grounds and Heathcote Hall will be provided via the gentle frontages at Boronia Grove and Tecoma Street.


The retention of the topographic character of Dillwynnia Grove will ensure that key views to the Villa and Pleasure Gardens are preserved. Clearing of the undergrowth will be essential to reinstate the glimpses of the Hall and its tower to those approaching from the West.

The proposed development is reduced in scale to two storeys along the western boundary to ensure it sits below the height of existing tree canopies. The built form will step down from Boronia Grove towards Dillwynnia Grove. The buildings will transition in height and rotate from an east-west axis that fronts the pleasure gardens and the Hall, to engage with Dillwynnia Grove Streetscape.

Traditional entry points to Heathcote Hall are proposed to be reinstated as pedestrian access, allowing site permeability to local residents. We propose Vehicular access to basement parking from Boronia Grove and Dillwynnia Grove as they are the best opportunity to bring vehicles into the development. Vehicles should not compete visually with the pedestrian nature and garden setting of the Hall and its grounds.

The proposed development respects old trees of high significance to the site: The Turpentine cluster near the western end of the reduced Heritage curtilage in addition to the English Oak and mature Camellias that form part of the Pleasure Garden are an essential asset and will preserve the character of the Pleasure Garden.

The building design takes an inspiration from the classical elements of Heathcote Hall. Vertical proportions of the tower / entry element of the Hall are reinterpreted as the entry element on the town houses. Solid timber doors with vertical proportions clearly demarcate an access element that is expressed as a vertical circulation connecting ground floor and first floor spaces. The upper section is glazed and will be partially operable, providing natural cross ventilation to eliminate the need for air conditioned spaces. The second element in the main street elevation is a rotated roof form that becomes a contemporary interpretation of the bedrooms. These bedrooms also open up to a veranda. This element varies in density to achieve various levels of privacy from a solid nature to a transparent metal balustrade when we emphasize the connection with the Pleasure Gardens.

VERICAL PLODEDION

The building floor plans are largely dual aspect to maximise solar access to habitable rooms and minimise privacy issues. Dual aspect design encourages natural cross ventilation. Most dwellings are oriented towards the perimeter streets providing easy access and passive surveillance. The nature of the clusters allows for the buildings to be grouped creating courtyards that have their own nature and identity; Grevillea courtyard, Jacaranda Court, etc.

Different typology responds to corner elements enclosing private open spaces thus connecting with communal open space and streetscape.

Three storey elements emerge from the centre of the site, masked from the surrounding streets by two storey buildings and the existing vegetation. They contain one and two bedroom apartments with universal access directly from the basement carpark level. These units provide variety in the housing offer and affordability level.

Solid rendered masonry elements of the Hall become the inspiration source for our proposed buildings. A combination of earthy rendered walls with timber and metal balustrades will create enough variety whilst defining a subtle palette of materials and colours that is complimented by four shades of metal roof cladding.

Articulated facades will create a unique expression that respects the Heritage nature of the site whilst living amongst the trees.

Verification of Qualifications

Gustavo Thiermann is a member of the Australian Institute of Architects Registration number is 8527.

Gustavo is a qualified Architect with extensive residential experience and the winner of the UDIA Sustainable Development Award in NSW.

Statement of Design Team

Ink Architects has been responsible for the design of the project since its inception and have worked throughout the design phases of this project with like-minded professionals.

This unique project has been designed to provide a development that is respectful of the historic characteristic of the site and Heathcote Hall. It respects and complies with the local planning and design controls and that responds to the best practice design principles of SEPP No. 65 and ADG.

Gustavo Thiermann Design Director Ink Architects Pty Ltd Registered Architect NSW No.

Design Statement

The Cultural significance of this site and the Heritage significance of Heathcote Hall have inspired our team to produce the best possible solution that integrates sustainability from an economic, social and environmental point of view.

A Conservation Management Plan has been prepared for this site of State Significance and its analysis and policy sections should be adopted in order to guide all future works.

A detailed site analysis prepared by GMU team has identified constrains and opportunities, creating a framework before we started exploring the preferred Masterplan options from an architectural point of view.

Step by step advice by Tasman Storey from Tropman + Tropman Architects has guided this team during the preparation of the concept options through to the final development of the preferred design.

We are proposing extensive restoration and adaptive re-use works to the Historic Heathcote Hall as well as the gardens and curtilage in accordance with the guidelines described on the CMP. All changes, alterations and repairs must retain and respect as much as possible of the significant fabric and values of the space, structures and elements. They should be positive and supportive of the significance of the precinct, and the place as a whole.

Design Principles

- Create a unique site specific proposal and architectural language that is sensitive to the existing built and natural features of the setting to achieve an integrated life style with the natural features of the site of "living amongst the trees"
- Create a responsive built form that stays below the tree canopies and Heathcote Hall, concentrating taller forms towards the centre of the site and away from the edges.
- Create a responsive built form of two storey dwellings around the perimeter respecting the residential character of the surrounding area achieving zero overlooking and overshadowing impact to the public domain.
- Respond to existing vegetation and reduce impact of excavation in proximity to mature landscape, enhancing through site links and vistas towards the Hall.
- Preserve and recreate significant views to Heathcote Hall by clearing undergrowth and strategically placing building clusters.
- Utilize the site's topography to allow the built form to cascade and adapt to the level changes providing landscape buffering between existing and proposed dwellings.
- Concentrate, minimise and capsulate vehicular entry points into the site.
- Celebrate the importance of Heathcote Hall in the placement of built form, arrival sequence, and open spaces

Principle 1: Context and Neighbourhood Character

Good design responds and contributes to its context. Context is the key natural and built features of a precinct.

Responding to context involves identifying the desirable elements of an area's existing or future character. Well-designed buildings respond to and enhance the qualities and identity of the area including the adjacent sites, streetscape and neighbourhood. Consideration of local context is important for all sites, including sites in established areas, those undergoing change or identified for change.

- The site is located at the corners of Boronia Grove to the North, Tecoma Street to the East and Dillwynnia Grove to the South.
- The proposed development site is screened by a mature and characteristic landscape. The pleasure Gardens have a classic European style, whereas the reminder of the site is native and reflects the proximity to the National Park. The proposed built form is recessive and respects the heritage significance of one of Sutherland Shire's most significant buildings.
- Two storey town house style dwellings are grouped in clusters, respecting the grain and scale of neighbouring residential dwellings. These buildings are setback from Boronia Grove and Tecoma streets to respect an existing grain and streetscape. Along Dillwynnia Grove however the buildings are setback further to respect the natural characteristics of the site. The embankment that extends from the western boundary towards the higher part of the site that forms a natural podium where the Historic Heathcote Hall is located.
- Buildings are proportioned and composed to reflect todays life style and amenity. All buildings and apartments are designed to have dual aspect facilitating solar access and cross ventilation, minimizing the need for mechanical ventilation or cooling.
- The proposed development provides a mix of one and two bedroom apartments plus a variety of two storeys, Three-bedroom town houses. This mix provides a wider selection of housing solution for a wider community in terms of affordability. Sustainability is not only about environmental aspects, yet it is about responding to commercial viability and social mix.

Principle 2: Built Form and Scale

- The proposed buildings are low in scale and bulk, respecting the historic value and nature of this site.
- The proposed built form is contemporary and does not intend to copy the style of the Historic Hall or the surrounding architectural style. The proposed buildings are efficient in the planning thus functional and robust in form. Thermal mass and solid construction will provide sustainable homes for the new residents. Special care has been taken in the selection of roofing materials and colours, as well as the paint finishes selected to complete a palette of colours and textures that intent to complement the classic finishes of the Hall.

The street facades and internal spaces are articulated providing variety in form, materiality and texture

As we access the site from Boronia Grove, we have developed two apartment buildings.
 Building A houses 15 apartments over three levels. They vary in size, orientation and planning, providing variety in the residential offer.
 Building B houses 6 apartments over two levels in various floor plan options and aspects. These provide universal access via pedestrian access paths as well as a lift connection to dedicated basement parking.

Principle 3: Density

- The unique nature of this site allows this proposed residential development to create a density that is compatible with the existing precinct and provides great levels of amenity due to the vast areas of private and community gardens. The general density achieved is at a ratio of 33 dwellings per hectare.
- The proposed FSR is 0.35:1 which complies with Sutherland Council LEP requirements.
- Comprising 36 x 3 bedroom townhouses, 15 x 2 bedroom apartments and 6 x 1 bedroom apartments, the proposal reflects market demand in relation to typologies The density of the development is considered sustainable within the existing availability of infrastructure, public transport, community facilities and environmental qualities of the site
- As such the proposal provides an appropriate density for a residential development in the immediate context.

Principle 4: Sustainability

Good design combines positive environmental, social and economic outcomes. Good sustainable design includes the use of the right materials, achieving passive thermal design. Optimum orientation promoting natural cross ventilation and sunlight for the amenity of residents and improved energy efficiency. Other elements include recycling and reuse of materials and waste, use of sustainable materials, and the specification of low VOC levels in paint finishes, glues and the like.

A comprehensive analysis of the building has been undertaken as part of the Basix Assessment however we note the following general inclusions as part of the proposal:

- 100 % of the apartment designs and townhouse layouts are cross ventilated. This is well over and above ADG recommendation and minimum standards.
- The grouping of buildings and associated shared structural elements also improves thermal mass. This is achieved both in apartments and Townhouses.
- Internal layouts and orientation have been arranged so as to provide good natural daylight and solar access to primary living areas, external private open space and courtyards
- Typical apartment floor plates line up to minimize structural transfers and maximise ceiling heights without exceeding permissible overall building heights
- Apartment lobbies are naturally ventilated and will enjoy access to natural light improving amenity whilst reducing energy costs.
- Appropriate overhangs, awning and screening have been introduced as building design elements minimizing heat overloads during equinox and summer months, thus providing efficient solar access during the shorter months in the year.
- Water storage and on-site detention tanks are integrated into the proposal.
- Energy efficient appliances and fixtures have been selected as part of the internal fit out to minimize water consumption of resources.
- Rainwater harvesting is dedicated for irrigation of landscaped areas.

Principle 5: Landscape

Good design promotes a high level of amenity and sustainable system, resulting in better communal open spaces with a purpose. The nature of this development is one of uniqueness provided by the Heritage nature of the site enhanced and complemented by the proposed development.

- All apartments house generous balconies positioned to flow from primary living spaces and take advantage of orientation and outlook. They enjoy a variety of vistas and natural aspect only unique to the characteristics of this environment.
- The courtyard apartments benefits from perimeter planting which help the development merge with its landscaped surroundings and improve amenity and privacy for future occupants (refer to Landscape Design Statement)
- With a general focus on low maintenance, the proposal incorporates selective planting of various heights and density with an overall desire to blend into the characteristic landscaping of the precinct.
- Deep soil landscaping to a great portion of the site as well as along all boundaries of the site will aid in the filtering of views to and from the proposed development. Necessary clearing of undesired species will improve the views from and to the restored Heathcote Hall.

Principle 6: Amenity

Good design positively influences internal and external amenity for residents and neighbours. Achieving good amenity contributes to positive living environments and resident well-being.

Good amenity combines appropriate room dimensions and shapes, access to sunlight, natural ventilation, outlook, visual and acoustic privacy, storage, indoor and outdoor space, efficient layouts and service areas, and ease of access for all age groups and degrees of mobility.

- A good variety of apartment sizes, layouts and general configuration.
- Optimum building separation to comply with current SEPP 65 and ADG requirements.
- The building layouts allows ventilation to all bedrooms and habitable spaces,

with 100% of all dwellings achieving cross ventilation. Smaller building volumes and articulated facades promote corner apartments, facilitating a good flow of natural breezes.

- Adequate day light and solar access for all rooms within the apartments and townhouses.
- Carefully considered privacy measures to all balconies and bedroom windows facing adjoining properties. Code compliance has been achieved without compromising variety in the views and orientation for all dwellings.
- Our solar study has indicated that 100% of the apartments and townhouses achieve over 2 hours' solar access at June 21.
- The communal open spaces are distributed across the site creating a variety
 of outdoor opportunities to enjoy the natural assets provided by the unique
 setting.

Principle 7: Safety

Safety in design is achieved by allowing a large proportion of the dwellings to address the public domain as well as communal open spaces.

- Two clearly identifiable apartment building entrances and generous open entry areas allow for adequate passive surveillance.
- Townhouses enjoy a recognizable entry of Boronia Grove, Tecoma Street or Dillwynnia Grove in its majority. The dwellings that address the Hall are provided with pedestrian access to the front door as well as their own private courtyards.
- Secure basement car parking and storage facilities is provided with keyed access to all dwellings. Clear circulation paths in the basement allow safe pedestrian movement, in particular when waiting at the lift and access to individual parking space and storage area.
- Additional parking spaces are provided for visitors both able and disabled.
 Separate lift access is dedicated to Buildings A and B.
- A clear definition between public and private spaces with clear, safe access points and adequate lighting of entrances and pedestrian areas including a separate access way for pedestrian and vehicles with clear visibility and sight lines.

Principle 8: Housing Diversity and Social Interaction

Good design achieves a mix of dwelling sizes, providing housing choice for different demographics, living needs and household budgets, as well as adaptable units for future adaptability.

- The future access to the Pleasure Gardens and Heathcote Hall is a fantastic improvement to the current private fenced precinct.
- The size, configuration and mix of the apartments associated with the development provides an appropriate response to the market demand of future occupants
- As set out in DCP, min. 20% of the units are designed to be adaptable with minimum building work at a later stage. The development has also provided generous width of lobbies for ease of accessibility and analysis has been conducted to ensure the development complies with the accessibility requirements. General access for people with disabilities has also been addressed in the design of the building and common areas. In addition to the adaptable units provided, 10% of the units are designed to be compliant with features of Silver level of Livable Housing Guidelines. Therefore, considering the SEPP 65 requirements, provided adaptable units and the DCP requirements, an additional 6 LHA Silver level – Livable units are provided for compliance.
- Communal open space is designed to provide additional amenity. Welldesigned landscaping encourages social interaction amongst the residents and visitors to the publicly accessible portion of the development.
- The site is located within close proximity to Heathcote Railway Station, and other public transport opportunities. Local schools are accessible at a tenminute walk and so is the access to walks in the adjacent Royal National Park.

Principle 9: Aesthetics

Good design achieves a built form that is proportioned and a balanced composition of elements that respect the scale and presence of the Historic Heathcote Hall.

- The masterplan concept options prepared by GMU explored constrains and opportunities based on the extensive site analysis and Development Controls compliance.
- The proposed development is based on the creation of building clusters that reflect the nature of the bulk and scale of the existing urban fabric.
- A selected palette of materials, colours and finishes create a development which nestles into the natural setting, adapting to level changes respecting the Heritage Curtilage and allowing the Hall to retain the height and presence when approached from various angles.
- An interplay of light and shade will allow the buildings to constantly change in colour and texture whilst as the shadows of the dominant foliage of the natural setting move across the site from sunrise to sunset.
- Materials and colours selected for the proposed volumes are clearly inspired by the simple lines, vertical proportions and material expression of the Italianate style of the Hall. But the expression is contemporary, it is modest in scale and bulk and takes a step back to allow the Hall to recover its dominance and presence.

Introduction

"Livable homes are designed and built to meet changing needs of occupants across their lifetime"

Heathcote Hall Development has been designed over a very extensive period of time by a selected group of professional with vast experience in Urban Design, Architecture, Heritage and Landscape Architecture to fulfil our clients dream of creating a sustainable community in a very unique setting. Our proposal is respectful of the Heritage significance of Heathcote Hall and surrounding heritage gardens. The proposal provides a mix of two storey dwellings and Apartment style living that will suit a community mado of first home buyers, young families and empty nesters

Numerical requirement

Sutherland Shire Council requires that 10% of the total number of dwellings comply with a minimum of Silver Level. The proposed development has a total of 57 dwellings, so we have selected 6 dwellings to be designed specifically to comply with Silver Level or higher. The selected Apartments are

Ground Floor Unit 2 and Unit 3 Level 1 Unit 7 and Unit 8 Level 2 Unit 12 and Unit 13

Nominated Architect: Gustavo Thiermann 8527

Performance design elements

REQUIREMENTS	PROPOSED	COMPLIANCE
"A safe continuous and step free path of travel from the street entrance and / or parking area to a dwelling entrance that is level."	The design of the previously numbered units has a safe and continuous path of travel from Boronia Grove and via a passenger lift from Basement parking. Entry door is 820 mm clear.	Yes
"At least one, level (step free) entrance into the dwelling."	The proposed apartment design complies with this clause (see apartment design insert)	Yes
'Where the parking space is part of the dwelling access it should allow a person to open their car doors fully and easily move around the vehicle."	Dedicated Basement Carparking spaces are 3200 mm wide x 5400 mm long clearly marked on an even firm and slip resistant surface at a grade of 1:40 or less.	Yes
"Internal doors and corridors facilitate comfortable and unimpeded movement between spaces."	Doors will have a minimum clearance of 820 mm and a level transition and threshold. Internal corridors and passageways have a minimum of 1000 mm clear width.	Yes
"The ground or entry level has a toilet to support easy access for home occupants and visitors."	The toilet has a minimum 1200 mm clear circulation space forward of the toilet pan exclusive of the swing of the door.	Yes

1	"The bathroom and shower is designed for easy and	The bathroom shower is a step free design and will	Yes
	independent access for all home occupants."	have a removable screen. Grab rails can be installed at a future stage as it is located in the	
		corner of the bathroom.	
2	"The bathroom and toilet walls are built to enable grab rails to be safely and economically installed."	Construction details will be provided at Construction documentation stage to comply with the performance requirements.	Yes
3	"Internal Stairways are to be designed to reduce the likelihood of injury and enable future adaptation."	There are no stairs required in the single level apartments.	Yes
4	"Kitchen space is designed to support ease of movement between fixed benches and to support easy adaptation."	No requirements for Silver Level	Yes
5	"Laundry space is designed to support ease of movement between fixed benches and to support easy adaptation."	No requirements for Silver Level.	Yes
6	"Entry Level requirement for a bedroom space."	No requirements for Silver Level.	Yes
7	"Light switches and power points are located at heights that are easy to reach for all home occupants."	No requirements for Silver Level.	Yes

8	"Door and tap hardware designed to be easily and independently opened and closed."	No requirements for Silver Level.	Yes
9	"Family/ living room features clear space to enable the home occupants to move in and around the room with ease."	No requirements for Silver Level.	Yes
10	"Window sills are installed at a height that enables home occupants to view the outdoor space from either a seated or standing position."	No requirements for Silver Level.	Yes
11	"Floor coverings are slip resistant to reduce the likelihood of slips and falls in the home."	No requirements for Silver Level.	Yes

Statement

I, Gustavo Thiermann, Design Director at Ink Architects, Pty Ltd, hereby confirm that the following dwellings achieve a LHD Silver livability rating.

Unit 2 and Unit 3
Unit 7 and Unit 8
Unit 12 and Unit 13

Gustavo Thiermann Design Director Inkarchitects Pty Ltd

Gustavo is a registered member of the NSW Architects Registration Board No 8527

JACKSONS NATURE WORKS

34 CALOOLA CRESCENT, BEVERLY HILLS 2209

9 150 4430 0 4 18) 414 502

The Secretary Fuzortinn Pty Ltd 221 – 225 Queen Street Beaconsfield NSW 2015

8th March 2018

Dear Sir,

RE: Addendum Arborist Report at Heathcote Hall, 1 - 21 Dillwynnia Grove, Heathcote (The Site) – DA 17/0467 with Sutherland Shire Council (Council).

1. Background

A Development Application (DA 17/0467) has been lodged with Sutherland Shire Council to retain Heathcote Hall and construct a residential development on Site (development works).

To prepare this report we have reviewed the following documents:

- Arboricultural Assessment Report by Jacksons Nature Works, dated 5.12.2017 (AAR/JNW 2017)
- Site Survey by Beuthien de Nett, dated 18.9.2003;
- Architectural plans by INK Architects, dated 1.12.2017, Issue A;
- Landscape plans by Site Design & Studio, dated 5.12.2017;
- Flora and Fauna Report by Ecological Australia, dated 7.12.2017;
- Email from Ms L Pemberton, Environmental Assessment Officer Planner, Sutherland Shire Council, dated 1.3.2018;
- Sutherland Shire Local Environmental Plan 2015, Clause 5.9 (TPO); &
- Sutherland Shire Council maps: Green web, Heritage SSLEP 2006 & Vegetation Communities; &
- Australian Standard AS 4970 2009 Protection of trees on development sites.

Council have requested additional information in their email dated 1.3.2018 to explain the assessment of the trees to be retained and removed.

This report will examine the design and provide Council with our discussions and recommendations for their approval.

2. Observations

The same tree numbering used in this report are those used in the AAR/JNW 2017 for ease of reference.

Our tree observations can be found in Annexure A.

Our tree location plan can be found in Annexure B.

3. Discussions

3.1 The following comments are advised in response to Councils request:

- a. The original arborist report by JNW, was dated October 2015 and was updated in the AAR/JNW 2017 report. Consequently Council have advised, "there were 64 changes in trees to be removed and retained when compared with the October 2015 report"; &
- b. The AAR/JNW 2017 report was a collaboration between Site Design & Studio, INK Architects and Jacksons Nature Works to provide Council with the latest assessment;

3.2 The following details are now provided to Council in regard to the changes of the retained and removed trees by comparison to the October 2015 report and AAR/JNW 2017 report:

Tree	Tree species	2015	2017	Comments
Nos		Report	Report	
2a	Exocarpos	Κ	RB	Building impacts & to remove from
	cupressiformis			surrounding trees due to parasitic species
3	Phoenix canariensis	Κ	Κ	2015 design has driveway within TPZ,
				now not impacted – keep
4	Phoenix canariensis	Κ	Κ	2015 design has driveway within TPZ,
				now not impacted – keep
5	Phoenix canariensis	K	K	2015 design has driveway within TPZ,
				now not impacted – keep
5a	Pittosporum undulatum	Κ	K	2015 design has driveway within TPZ,
	(P. undulatum)			now not impacted – keep
5b	P. undulatum	Κ	K	2015 design has driveway within TPZ,
				now not impacted – keep
7	Syncarpia glomulifera	Not	K	<10% impacts within TPZ – keep
	(S. glomulifera)	listed		
7a	P. undulatum	Not	Κ	<10% impacts within TPZ – keep
		listed		
7b	P. undulatum	Not	Κ	<10% impacts within TPZ – keep
		listed		
8/9	Dead stump	Κ	Remove	Remove for safety reasons
10	Eucalyptus saligna (E.	RB	Κ	<10% impacts within TPZ – keep
	saligna)			
10a	Eucalyptus paniculata	RB	Κ	<10% impacts within TPZ – keep
	(E. paniculata)			
15a	P. undulatum	Poor	Κ	<10% impacts within TPZ – keep
		form		
17c	E. sp	Poor	Κ	<10% impacts within TPZ – keep
	_	form		
22	E. saligna	K	RB	Dangerous Street tree – remove for safety
23	E. saligna	Remove	Remove	³ / ₄ Dead (dangerous) – remove
25c	Pinus radiata (P.	Κ	Listed as	Street tree <10% impacts within TPZ –
	radiata)		Exempt	keep
28c	P. undulatum	Κ	RB	>10% impacts within TPZ – remove
29a	Ficus rubiginosa	Κ	K	<10% impacts within TPZ – keep
34	E. saligna	Remove	RB	Dangerous tree with fungus – remove

37a	E. saligna	Poor form	K	<10% impacts within TPZ. ST – keep
38	P. undulatum	RB	K	<10% impacts within TPZ – keep
41b	P. undulatum	Not	K	<10% impacts within TPZ – keep
		listed		1 1
45	E. paniculata	Κ	RB	>10% impacts within TPZ – remove
45a	P. undulatum	Not	RB	>10% impacts within TPZ – remove
		listed		
45b	Acacia decurrens	Not	RB	>10% impacts within TPZ – remove
15 -	E a minulata	listed Poor	V	<100/ immente mithin TDZ laser
45c	E. paniculata	form	K	<10% impacts within TPZ – keep
45d	P. undulatum	Not	K	<10% impacts within TPZ – keep
-1 . 7 . 0	1. unununun	listed	IX .	(1070 mpacts whill 112 keep
46	E. sp.	K	RB	>10% impacts within TPZ – remove
46a	P. undulatum	Κ	RB	>10% impacts within TPZ – remove
46b	P. undulatum	Κ	RB	>10% impacts within TPZ – remove
47	E. paniculata	Κ	RB	>10% impacts within TPZ – remove
47a	S. glomulifera	Poor	RB	>10% impacts within TPZ – remove
		form		
47b	P. undulatum	Poor	RB	>10% impacts within TPZ – remove
		form		
47c	S. glomulifera	Poor	RB	>10% impacts within TPZ – remove
47d	P. undulatum	form Poor	K	<100/ immente mithin TDZ laser
4/a	P. unaulatum	form	ĸ	<10% impacts within TPZ – keep
47e	P. undulatum	Poor	K	<10% impacts within TPZ – keep
	1. unununun	form	IX .	(1070 mpacts whill 112 keep
47f	S. glomulifera	Poor	K	<10% impacts within TPZ – keep
	21 810	form		r
47g	E. saligna	Poor	K	<10% impacts within TPZ – keep
	-	form		
47h	P. undulatum	Poor	Κ	<10% impacts within TPZ – keep
		form	_	
48a	S. glomulifera	Poor	K	<10% impacts within TPZ – keep
4.01		form	V	<100/
48b	E. paniculata	Poor	K	<10% impacts within TPZ – keep
49a	P. undulatum	form Poor	K	<10% impacts within TPZ – keep
79a	1. инанинин	form	K	<1070 impacts within 112 - keep
49b	E. paniculata	Poor	K	<10% impacts within TPZ – keep
	· I · · · · · · · · · · · · · · · · · ·	form		
53	E. paniculata	RB	K	<10% impacts within TPZ – keep
54	S. glomulifera	RB	Κ	<10% impacts within TPZ – keep
57b	E. paniculata	RB	Κ	<10% impacts within TPZ – keep
57e	Brachychiton x	RB	Κ	<10% impacts within TPZ – keep
	acerifolius		_	
57f	E. paniculata	Not	K	<10% impacts within TPZ – keep
		listed	IZ.	
57g	E. paniculata	Not	K	<10% impacts within TPZ – keep
57h	S. glomulifera	listed Not	K	<10% impacts within TPZ – keep
3711	s. giomuijera	listed	ĸ	>1070 impacts within 1PZ – Keep
57i	E. paniculata	Not	K	<10% impacts within TPZ – keep
511	D. punicululu	listed		~ 1070 impacts within $112 - \text{Keep}$
57j	Macadamia tetraphylla	Not	K	<10% impacts within TPZ – keep
- · J		listed		
57k	Dead tree	Not	K	Next door. <10% impacts within TPZ –
		listed		keep

571	Dead tree	Not	K	Next door. <10% impacts within TPZ -
		listed		keep
57m	Dead tree	Not	K	Next door. <10% impacts within TPZ –
		listed		keep
65	S. glomulifera	RB	Κ	<10% impacts within TPZ – keep
65a	P. undulatum	RB	K	<10% impacts within TPZ – keep
79	Pinus radiata (P.	Exempt	K	<10% impacts within TPZ – keep
	radiata)	-		
80	E. saligna	RB	Κ	<10% impacts within TPZ – keep
82a	P. undulatum	RB	Κ	<10% impacts within TPZ – keep
85	Araucaria heterophylla	Κ	RB	>10% impacts within TPZ – remove
86	E. saligna	Κ	RB	>10% impacts within TPZ – remove
90	E. saligna	K	RB	>10% impacts within TPZ – remove
96	E. saligna	K	RB	>10% impacts within TPZ – remove
98	E. saligna	RB	K	<10% impacts within TPZ – keep
98a	E. saligna	Κ	RB	>10% impacts within TPZ – remove
99	S. glomulifera	RB	K	<10% impacts within TPZ – keep
99b	Persea americana	Exempt	K	<10% impacts within TPZ – keep
99c	Persea americana	Exempt	Κ	<10% impacts within TPZ – keep
99d	Macadamia tetraphylla	Exempt	K	<10% impacts within TPZ – keep
100	S. glomulifera	RB	K	<10% impacts within TPZ – keep
102	Quercus robur	RB	Κ	<10% impacts within TPZ – keep with
				care
102b	P. undulatum	K	RB	>10% impacts within TPZ – remove
107a	Michelia figo	RB	K	<10% impacts within TPZ – keep
107c	S. glomulifera	RB	K	<10% impacts within TPZ – keep
107g	Brachychiton x	RB	K	<10% impacts within TPZ – keep
	acerifolius			
108	P. undulatum	RB	K	<10% impacts within TPZ – keep
109	P. undulatum	RB	K	<10% impacts within TPZ – keep
110	S. glomulifera	RB	K	<10% impacts within TPZ – keep
111	E. saligna	RB	K	<10% impacts within TPZ – keep
112	S. glomulifera	RB	K	<10% impacts within TPZ – keep
113	S. glomulifera	RB	K	<10% impacts within TPZ – keep
114	S. glomulifera	RB	K	<10% impacts within TPZ – keep
116	S. glomulifera	RB	K	<10% impacts within TPZ – keep
117	Cupressus	Exempt	K	<10% impacts within TPZ – keep
110-	sempervirens	DD	K	<100/ immente mithin TDZ laser
118a 123j	P. undulatum	RB K		<10% impacts within TPZ – keep
123	P. undulatum		RB K	>10% impacts within TPZ – remove
	Laurus nobilis	RB	K	<10% impacts within TPZ – keep
128 134	Toona ciliata P. radiata	RB Exempt	K K	<10% impacts within TPZ – keep <10% impacts within TPZ – keep Street
134	1. 1001010	Блетрі	ĸ	<10% impacts within TPZ – keep Street tree
136a	P. radiata	Exempt	K	<10% impacts within TPZ – keep Street
130a	1.1001010	Блетрі	IX.	tree
137c	Dead tree	Remove	K	<10% impacts within TPZ – keep Street
1370		Remove	12	tree
138	Cinnamomum	Exempt	K	<10% impacts within TPZ – keep Street
150	camphora	Exempt		tree
138b	Cinnamomum	Exempt	K	<10% impacts within TPZ – keep Street
1500	camphora	Land		tree
139	P. undulatum	Not	K	<10% impacts within TPZ – keep
1.57		listed		
	P. radiata	Exempt	K	<10% impacts within TPZ – keep
149	P. raalala			

3.3 The recommendations of the AAR/JNW 2017 are summarised in the recommendations and include the trees discussed in this report.

4. Recommendations

In consideration of the data collected recommendations are provided for the removal or retention of trees including specific tree protection measures required to reduce the anticipated impacts from the proposed construction on those trees proposed to be retained.

The report specifically recommends

- a. Retain the following street trees: Tree 1, 1a, 1b, 1c,1d,1e, 1f, 1g, 1h, 2, 3, 4, 5, 5a, 5b, 6, 7, 7a, 7b, 11, 12, 13, 14, 15, 15a, 16, 17, 17a, 17b, 17c, 18, 19, 20, 21, 25, 25a, 25b, 25c, 26, 27, 28, 28a, 28b, 28d, 29, 29a, 30, 31, 36, 37, 37a, 38, 39, 40, 40a, 40b, 40c, 40d, 40e, 41a, 41b, 42, 43, 44, 45, 45b, 45c, 45d, 47d, 47e, 47g, 47h, 48, 48a, 48b, 49, 49a, 49b, 50, 51, 51a, 51b, 51c, 51d, 51e, 51f, 52, 52a, 52b, 52c, 134, 134a, 134b, 135, 136, 136a, 137, 137a, 137b, 137c, 137d, 137e, 137f, 137g, 138, 138a, 138b, 140, 140a, 143, 143b, 143c, 145, 147, 148, 150, 151, 152, 154, 155, 156, 157, 158, 158a, 168, 169 & 170;
- b. Remove the following street trees: Trees 2a, 8/9, 22, 28c, 45a, 46, 46a, 46b, 47, 47a & 47b;
- c. Retain the following trees on site: Tree 10, 10a, 13a, 41, 47f, 47i, 53, 54, 65, 65a, 80, 82a, 87, 98, 99, 99b, 99c, 99d, 100, 101, 102, 105, 106, 107a, 107b, 107c, 107g, 108, 109, 110, 111, 112, 113, 114, 116, 117, 119, 123, 123h, 124, 125, 126, 127, 128, 129, 129a, 130, 131a, 132, 132a, 133, 139, 141, 149, 149a, 149b, 162, 171, 171a, 171b & 171c, ;
- d. Remove the following trees on site: Tree 23, 34, 47c, 56, 56a, 57, 57a, 57d, 58a, 58b, 60, 60a, 60b, 61, 62, 63, 65b, 66a, 67, 68, 69, 70, 70a, 71, 71a, 72, 72a, 74, 75a, 75b, 76, 77, 78, 81, 83, 84, 85, 86, 87a, 88, 89b, 89c, 90, 91, 92, 94, 95, 96, 97, 98a, 102a, 102b, 1034, 104, 107, 115, 115a, 123a, 123j, 143a, 161a, 163b, 166a, 167 & 173a;
- e. Remove the following Exempt trees on site: Tree Privet trees in and around 38 47, 55, 57c, 58, 59, 64, 66, 73, 75, 79, 82, 89, 89a, 96a, 99a, 100a, 107d, 107e, 107f, 115b, 117a, 118, 118b, 122, 122 (area), 123b, 123c, 123d, 123e, 123f, 123g, 123i, 128a, 130a, 142, 144, 153, 160, 161, 161b, 163a, 164, 165, 171d, 172, 173, 174, 175, 176, 176a & 177;
- f. Retain the following trees in the neighbour's properties: Trees 57b, 57e, 57f, 57g, 57h, 57i, 57j, 57k, 57l & 57m;
- g. That DA 17/0467 be approved by Sutherland Shire Council Council;
- h. Tree removal work shall be carried out by an experienced tree surgeon in accordance with *Safe Work Australia Guide for Managing Risks of Tree Trimming and Removal (2016)*;
- That the retained trees be deadwooded to ensure the on-going safety of the future residents of this site. All deadwooding shall be in conformity with AS 4373 – 2007 Pruning of amenity trees Section 3.17 & 7.2.2 *Deadwooding* and performed by a qualified and experienced arborist who holds Australian Qualifications Level 3 in Horticulture (Arboriculture);
- j. That at least 12 acorns be collected from tree 102 and propagated as a replacement tree for Tree 102. The acorn collector shall be a recognised and experienced propagator who has industry experience in propagation to ensure

the successful propagation of the acorns. Once, the seedlings are 2 years old, at least two shall be planted within the vicinity of tree 102, then when well established tree 102 shall be removed;

- k. That Tree 102 shall be pruned to remove deadwood and defective branches in conformity with AS 4373 2007 Pruning of amenity trees Section 3.17 & 7.2.2 *Deadwooding* and Section 7.40 & 7.2.4 *Selective pruning* and performed by a qualified and experienced arborist who holds Australian Qualifications Level 3 in Horticulture (Arboriculture);
- Install the following Tree Protection Measures around the retained trees: Tree
 protection measures shall be a temporary fence of chain wire panels 1.8 metres
 in height (or equivalent), supported by steel stakes or concrete blocks as
 required and fastened together and supported to prevent sideways movement.
 Existing boundary fences or walls are to be retained shall constitute part of the
 tree protection fence where appropriate. A sign is to be erected on the tree
 protection fences of the trees to be retained that the trees are covered by
 Council's tree preservation orders and that "No Access" is permitted into the
 tree protection zone;
- m. Trunk protection shall consist of a padding material such as hessian or thick carpet underlay wrapped around the trunk. Hardwood planks (50mm x 100mm or similar) shall be placed over the padding and around the trunk of the tree at 150mm centres. The planks shall be secured with 8-gauge wire or hoop steel at 300mm spacing. Trunk protection shall extend a minimum height of 2 metres or to the maximum possible length permitted by the first branches on retained trees refer Annexure D;
- n. That a Tree Management Plan be prepared as part of the Construction Certificate by a consulting arborist who holds the Diploma in Horticulture (Arboriculture), Level 5 under the Australian Qualification Framework;
- o. An AQF Level 5 Project Arborist shall be engaged to supervise the building works and certify compliance with all Tree Protection Measures;
- p. Our tree location plan can be found on Annexure B; &
- q. The Tree Impact Plan can be found on Annexure C.

locka

Ross Jackson M.A.A (Nos. 1695) & M.A.I.H. Consulting Arborist Graduate Certificate in Arboriculture – AQF Level 8 (Honours) Diploma Horticulture (Arboriculture) – AQF Level 5 Certificate III in Horticulture Certificate in Horticulture (Landscape – Honours)

Tree No	Botanical Name	Age Class	Height (m)	Spread (m)	D.B.H. (cm)	D.R.B. (cm)	TPZ (radius m)	SRZ (radius m)	Condition comments as seen on site	ULE	Tree outcome; Remove in building (RB), Keep (K), Exempt remove (Ex)
1	Eucalyptus (E.) globoidea	М	18	18	90	97	10.8	3.3	G (Street tree St.)	2	K
1A	Syncarpia (S.) glomulifera	М	7	6	26	38	3.1	2.2	F – 20% DW, Thin foliage density, pruning. 3 stems St	3	K
1B	Pittosporum (P.) undulatum	М	5	5	13	14	2.0	1.5	G - St	2	K
1C	P. undulatum	М	4	3	12	14	2.0	1.5	G – St	2	К
1D	P. undulatum	М	5	4	22	30	2.6	2.0	G - St	2	K
1E	S. glomulifera	М	7	5	15	18	2.0	1.6	G - St	2	K
1F	S. glomulifera	М	8	6	20	26	2.4	1.9	G - St	2	K
1G	Dead	D							Dead tree - St	4A	K
1H	P. undulatum	М	8	5	18	22	2.2	1.8	G. Street tree - St	2	K
2	E. globoidea	М	18	12	50	60	6.0	2.7	F – G – trunk in jury at 4m with minor decay. Split branch union at 6m - St	2D	K
2A	Exocarpos cupressiformis	М	5	6	17	20	2.0	1.7	G – parasitic tree - St	5	RB
3	Phoenix (Ph.) canariensis	М	10	12	80	90	9.6	3.2	G - St	2	K
4	Ph. canariensis	М	11	12	82	91	9.8	3.2	G - St	2	К
5	E. saligna	М	20	18	105	105	12.6	3.4	G – twin trunks - St	2	K

Annexure A: Observations as seen on the day of inspection of trees

											К
									G – growing beside tree 5. Consider removal (less competition) - St		
5A	P. undulatum	М	8	5	19	30	2.3	2.0		3 (5)	
5B	P. undulatum	М	8	5	28	30	3.4	2.0	G – growing beside tree 5. Consider removal (less competition) - St	3 (5)	K
6	E. paniculata	М	25	14	52	58	6.2	2.6	F but suspect trunk integrity – Phellinus robusta seen at 4m. DW (20%) - St	4C	K
7	S. glomulifera	M	18	12	74	83	8.9	3.1	G- St	2	К
7A	P. undulatum	М	5	3	13	16	2.0	1.5	G suppressed by T. 7 - St	3	К
7B	P. undulatum	М	5	3	14	20	2.0	1.7	G suppressed by T. 7 - St	3	K
8&9	Stump								Remove dead stump	5	Ex
10	E. saligna	М	25	20	98	101	11.8	3.3	G – D W to mid canopy (25%)	3	K
10A	E. paniculata	М	8	5	21	30	2.5	2.0	G <5% DW	2	K
11	E. saligna	М	25	18	104	124	12.5	3.6	F – shed limb at 7, 8 & 12m, basal cavity, N trunk hollow at 4m	3 (4C)	K
12	Ph. canariensis	М	8	6	57	75	6.8	2.9	G - St	2	K
13	E. saligna	М	12	6	41	48	4.9	2.4	F – A, trunk hollows, cavities & epicormic regrowth - St	3C	K
13A	S. glomulifera	М	8	6	46	60	5.5	2.7	G	2	К

											K
									F – dead branch stubs to 8m, failed branches at 12 & 16m - St		
14	E. saligna	М	25	8	81	94	9.7	3.2		3C	
15	E. saligna	М	25	10	66	83	7.9	3.1	F – G, dead stub at 8m - St	2	К
15A	P. undulatum	М	5	3	15	20	2.0	1.7	F – apical growing point lost - St	3	К
16	S. glomulifera	М	8	6	48	60	5.8	2.7	G – 2 trunk. Suppressed form - St	3	К
17	Ph. canariensis	М	6	6	43	58	5.2	2.6	G - St	2	K
17A	S. glomulifera	М	18	10	73	84	8.8	3.1	F – DW <10% - St	3	K
17B	P. undulatum	М	5	5	16	20	2.0	1.7	G - St	2	K
17C	Eucalyptus sp.	М	8	3	20	29	2.4	2.0	F – leaning to street - St	3	K
18	S. glomulifera	М	12	6	35	44	4.2	2.3	G - St	2	K
19	E. saligna	М	25	14	93	114	11.2	3.5	F – G. OHPL pruning. Shed limb at 10m - St	2D	К
20	S. glomulifera	М	12	6	35	43	4.2	2.3	G - St	2	K
21	S. glomulifera	М	12	8	59	70	7.1	2.8	G - St	2	K
22	E. saligna	M	20	6	112	134	13.4	3.7	E trunk – G with OHPL pruning, W trunk dead (8m). Termites - St	2D	RB, also structurally defective
23	E. saligna	ОМ	18	8	100	115	12.0	3.5	$P - \frac{3}{4}$ dead	4A	RB, also structurally defective
24	Not found										

		1									K
25	E. saligna	М	25	10	63	84	7.6	3.1	G – basal injury (stable) - St	2	Κ
25A	E. saligna	М	24	6	50	62	6.0	2.7	G - St	2	K
	w w										К
	Jacaranda								G – small Callistemon viminalis next to this tree – G - St		
25B	mimosifolia	М	8	4	20	30	2.4	2.0		2	
25C	Pinus radiata	М	7						Exempt tree - St	5	Ex
									F – G Dead stub at 7m. Basal injury (solid). Lightning hit - St		К
26	E. saligna	М	25	12	110	130	13.2	3.7		2	
27	Ficus microcarpa var. Hillii	М	5	5	17	20	2.0	1.7	G - St	2	К
28	E. saligna	М	10	5	35	60	4.2	2.7	F & P structure (canopy all epicormic regrowth) - St	4C	К
28A	E. saligna	М	14	12	73	93	8.8	3.2	G with long laterals & squat - St	3	K
28B	P. undulatum	М	7	8	27	40	3.2	2.3	G - St	2	K
28C	P. undulatum	М	6	4	15	18	2.0	1.6	F suppressed form - St	3	RB
28D	Banksia integrifolia	М	6	2	16	19	2.0	1.6	G - St	2	К
29	Ph. canariensis	М	8	8	62	82	7.4	3.0	G - St	2	K
29A	Ficus rubiginosa	М	8	10	44	53	5.3	2.5	G – 3 trunks - St	2	K
30	Ph. canariensis	М	7	8	53	80	6.4	3.0	G - St	2	K
31	Ph. canariensis	М	8	8	64	96	7.7	3.3	G - St	2	K

32	Not found										
33	Not found										
34 35	E. saligna Not found	M	20	16	100	120	12.0	3.6	F & P structural integrity (<i>Phellinus robusta</i> seen at 6m). Shed branches x 4, Trunk cavity at 12m	4C	RB
36	E. paniculata	М	14	6	39	46	4.7	2.4	G - St	2	K
37	E. saligna	M	8	6	39	45	4.7	2.4	G, leaning towards street - St	3	К
37A	E. saligna	М	7	4	21	40	2.5	2.3	P all epicormic regrowth - St	4C	K
38	P. undulatum	М	8	8	38	50	4.6	2.5	G – twin trunk - St	2	K
39	E. saligna	М	10	6	36	45	4.3	2.4	G suppressed form - St	3	К
40	E. paniculata	М	10	8	36	42	4.3	2.3	F – small crown & 20% epicormic regrowth - St	3	К
40A	P. undulatum	М	7	4	17	22	2.0	1.8	G - St	2	К
40B	P. undulatum	М	8	6	25	36	3.0	2.2	G twin trunk - St	2	K
40C	P. undulatum	М	7	5	27	40	3.2	2.3	G - St	2	K
40D	<i>P. undulatum</i> x 4	М	5	3	18	28	2.2	1.9	G - St	2	K
40 E	P. undulatum	М	6	5	15	20	2.0	1.7	G - St	2	К
41	E. saligna	М	18	10	47	58	5.6	2.6	G	2	К
41A	<i>P. undulatum</i> x 2	М	8	6	22	28	2.6	1.9	G – St	2	К
41B	P. undulatum	М	8	6	35	40	4.2	2.3	G – St	2	К
42	S. glomulifera	М	8	6	26	31	3.1	2.0	G - St	2	K

											К
									F – G crown lifted, DW (<10%), epicormic regrowth (minor) - St		
43	E. paniculata	М	18	10	45	56	5.4	2.6		3	
44	E. saligna	М	20	10	49	59	5.9	2.7	G- St	2	K
45	E. paniculata	М	20	16	73	84	8.8	3.1	G. DW,10%, Bark/fork at 4m - St	3	RB, in driveway
45A	P. undulatum	М	6	4	12	18	2.0	1.6	G – St	2	K
45B	Acacia decurrens	М	9	6	16	20	2.0	1.7	G suppressed form - St	3	RB
45C	E. paniculata	SM	6	1	11	16	2.0	1.5	G – pole like - St	3	K
45D	P. undulatum	М	7	4	15	20	2.0	1.7	G - St	2	K
38 - 47	Ligustrum (L.) lucidum	М							Noxious weed between these trees. Remove	5	Ex
46	Eucalyptus sp.	М	8	2	30	30	3.6	2.0	P cavity, termites & injuries - St	4C	RB, also structurally defective
46A	P. undulatum	М	7	4	15	18	2.0	1.6	G - St	2	RB, in driveway
46B	S. glomulifera	М	7	4	37	50	4.4	2.5	A – apical point dead - St	4C	RB, in driveway
47	E. paniculata	М	18	10	45	54	5.4	2.6	G – F - St	3	RB, in driveway
47A	S. glomulifera	М	6	3	26	30	3.1	2.0	F suppressed form - St	3	RB, in driveway
47B	P. undulatum	М	7	7	23	27	2.8	1.9	G – suppressed form – St	3	RB, in driveway
47C	S. glomulifera	М	8	5	29	30	3.5	2.0	G – suppressed form – St	3	RB
47D	P. undulatum	М	7	4	17	20	2.0	1.7	G – suppressed form – St	3	K

		1									
47E	P. undulatum	М	6	6	24	27	2.9	1.9	G – suppressed form – St	3	K
47F	S. glomulifera	М	8	5	21	28	2.5	1.9	G – suppressed form – St	3	K
47G	E. saligna	М	12	8	36	43	4.3	2.3	G – suppressed form – St	3	K
47H	P. undulatum	М	6	4	18	22	2.2	1.8	G – suppressed form – St	3	K
47I	S. glomulifera	M	6	4	19	20	2.3	1.7	G – suppressed form. 2 trunk - St	3	K
48	E. saligna	M	25	20	90	108	10.8	3.4	G - St	2	K
48A	S. glomulifera	SM	8	1	18	29	2.2	2.0	F – pole like/small canopy - St	3	K
48B	E. paniculata	М	8	2	25	30	3.0	2.0	F branch prune at 4m, small canopy - St	3	K
49	S. glomulifera	М	9	4	25	28	3.0	1.9	G – St	2	K
49A	P. undulatum	М	8	6	22	27	2.6	1.9	G – St	2	K
49B	E. paniculata	М	9	3	21	22	2.5	1.8	G – suppressed form – St	2	K
50	E. paniculata	М	20	14	52	63	6.2	2.7	G - St	2	K
51	E. paniculata	SM	12	2	23	29	2.8	2.0	F – pole like (suppressed) – St	3	K
51A	Acacia decurrens	М	8	5	12	15	2.0	1.5	G – St	2	К
51B	Acacia decurrens	М	8	5	17	20	2.0	1.7	G – St	2	K
51C	Eucalyptus sp.	М	12	3	19	27	2.3	1.9	G (pole like & suppressed) – St	3	К
51D	Eucalyptus sp.	М	14	6	45	60	5.4	2.7	F (attached to dead stump). Termites - St	3 (4C)	К

	Acacia								G – St		K
51E	decurrens	М	6	3	12	17	2.0	1.6	0-51	3	
51F	Acacia decurrens	М	7	3	15	18	2.0	1.6	G – St	3	К
52	E. saligna	М	10	5	26	29	3.1	2.0	G – suppressed form – St	3	K
52A	P. undulatum	M	8	6	30	40	3.6	2.3	G – St	2	К
52B	E. paniculata	М	12	6	35	45	4.2	2.4	G – St	2	K
52C	E. paniculata	М	8	4	18	24	2.2	1.8	G – St	2	K
53	E. paniculata	М	14	6	32	40	3.8	2.3	G	2	K
54	S. glomulifera	М	8	8	40	42	4.8	2.3	G	2	K
55	Dead tree	D							Dead with decay fungi - Exempt	4A	Ex
56	E. paniculata	М	25	18	80	100	9.6	3.3	F – G, DW (10%), Shed branches	3	RB
56A	S. glomulifera	М	12	10	55	65	6.6	2.8	F – G. Suppression to N	3	RB
57	E. botryoides	М	10	2	22	27	2.6	1.9	$P - \frac{1}{2}$ dead	4A	RB, also structurally defective
57A	Eucalyptus sp.	М	8	3	47	60	5.6	2.7	P – topped at 7m	4C	RB
57B	E. paniculata	М	22	20	80	91	9.6	3.2	G – DW (10%), ND	3	K
57C	L. sinense	М	6						Noxious weed - Exempt	5	Ex
57D	P. undulatum	М	6	3	10	18	2.0	1.6	G	3	RB
57E	Brachychiton x acerifolius	М	7	4	21	24	2.5	1.8	G, ND	2	K
57F	E. paniculata	М	10	4	34	40	4.1	2.3	F, ND	2a	K
57G	E. paniculata	М	20	12	70	88	8.4	3.1	G, ND	2a	K
57H	S. glomulifera	М	12	6	52	60	6.2	2.7	G, ND	2a	K
57I	E. paniculata	М	20	10	54	60	6.5	2.7	G, ND	2a	K

57J	Macadamia tetraphylla	М	7	5	20	24	2.4	1.8	G, ND	2a	К
57K	Dead Tree								ND		K
57L	Dead Tree								ND		K
57M	Dead Tree								ND		K
58	Dead	D							Dead tree - Exempt	4A	Ex
58A	P. undulatum	М	8	4	22	24	2.6	1.8	G	3	RB
58B	P. undulatum	М	9	5	21	24	2.5	1.8	G	3	RB
59	Pinus radiata	М	20						Exempt tree	5	Ex
60	E. paniculata	М	12	4	26	32	3.1	2.1	A – very small canopy	3 (5)	RB
60A	S. glomulifera	М	8	4	21	26	2.5	1.9	G	2	RB
60B	E. paniculata	М	8	5	24	27	2.9	1.9	G	2	RB
61	S. glomulifera	М	12	6	54	55	6.5	2.6	G - bifurcated at 1 - 1.5m, Suppressed form	4C	RB
62	E. paniculata	М	14	7	32	38	3.8	2.2	G – suppressed form	3	RB
63	S. glomulifera	М	8	4	25	27	3.0	1.9	G	2	RB
64	Dead tree	D							Dead - Exempt	4A	Ex
65	S. glomulifera	М	10	6	39	55	4.7	2.6	G	2	K
65A	P. undulatum	М	7	4	19	21	2.3	1.7	G	2	K
65B	P. undulatum	М	8	5	14	17	2.0	1.6	G	3	RB
66	Dead	D							Dead tree - Exempt	4A	Ex
66A	P. undulatum	М	7	6	26	28	3.1	1.9	F – borers, thinning foliage density	4C	RB
67	S. glomulifera	М	9	7	37	42	4.4	2.3	F – G distorted canopy form & suppressed. Date Palm at base	3	RB

		-	-		-						
68	P. undulatum	М	9	5	25	34	3.0	2.1	G	2	RB
69	S. glomulifera	М	10	7	37	47	4.4	2.4	G	2	RB
70	S. glomulifera	М	8	5	34	49	4.1	2.5	G	2	RB
70A	S. glomulifera	М	7	3	14	16	2.0	1.5	F – suppressed form	3	RB
71	S. glomulifera	М	14	6	37	42	4.4	2.3	G – bifurcated at 4m	3 (4C)	RB
71A	E. paniculata	М	7	1	15	18	2.0	1.6	G – suppressed form. Privet entwined in root plate	5	RB
72	S. glomulifera	М	14	6	36	42	4.3	2.3	G	2	RB
72A	P. undulatum	М	6	6	18	20	2.2	1.7	G	2	RB
73	Dead	D							Dead tree - Exempt	4A	Ex
74	S. glomulifera	М	10	8	42	49	5.0	2.5	G	2	RB
75	Pinus radiata	М							Exempt tree	5	Ex
75A	P. undulatum	М	7	8	28	35	3.4	2.1	G	2	RB
75B	Araucaria heterophylla	М	9	5	34	34	4.1	2.1	G – bifurcated at 2m. Small leafed Privet beside	3	RB
76	E. paniculata	М	20	20	81	89	9.7	3.2	G	2	RB
											RB, also structurally defective
									F – A, DW 20%, Basal injury, Epicormic regrowth 10%, Failed branches, Trunk injury at 6m		
77	E. saligna	ОМ	16	16	77	120	9.2	3.6		4C	
78	E. saligna	М	25	25	150	170	15.0	4.1	G – DW at <10%, Minor epicormic regrowth	2	RB
79	E. saligna Pinus radiata	M	8	5	38	36	4.5	2.2	Exempt tree	5	K

80	E. saligna	М	16	16	100	110	12.0	3.4	F. Branch failures at 5, 6 & 8m. DW at <10%	3 (4A)	K
81	E. amplifolia	M	14	8	56	105	6.7	3.4	G – DW <10%	3	RB
82	Pinus radiata	M	14	0	50	105	0.7	5.4	Exempt tree	5	Ex
82A	P. undulatum	M	8	8	26	26	3.1	1.9	G	2	K
83	E. amplifolia	М	10	6	39	42	4.7	2.3	G – DW <10%	3	RB
84	Angophora (An.) costata	М	9	5	31	34	3.7	2.1	G	2	RB
85	Araucaria columnaris	М	10	5	37	41	4.4	2.3	G	2	RB
86	E. saligna	М	16	8	56	66	6.7	2.8	G	2	RB
87	E. microcorys	М	20	10	59	71	7.1	2.9	G	2	RB
87A	E. paniculata	М	8	6	21	24	2.5	1.8	F – distorted branch form at 4m	3	RB
88	Jacaranda mimosifolia	М	10	10	40	54	4.8	2.6	G – 4 trunks	3	RB
89	Grevillea robusta	М							Exempt tree	5	Ex
89A	Acer negundo	М							Exempt tree	5	Ex
89B	Jacaranda mimosifolia	М	10	6	32	35	3.8	2.1	G	2	RB
89C	Callistemon viminalis	М	7	4	25	30	3.0	2.0	P – upper canopy failure	4C	RB
90	E. saligna	М	30	16	69	74	8.3	2.9	G-DW <10%	2	RB
91	Jacaranda mimosifolia	М	9	8	41	42	4.9	2.3	F but A form (2 trunks)	3 (4C)	RB
92	E. microcorys	М	24	18	72	79	8.6	3.0	G bifurcated at 2m	3 (4C)	RB
93	Not found										

									A – P, leaning, DW, Epicormic		RB
94	E. saligna	М	10	8	50	57	6.0	2.6	regrowth	4C	
95	E. saligna	М	16	8	47	54	5.6	2.6	F DW, leaning, poor form	4C	RB
96	E. saligna	М	16	16	48	55	5.8	2.6	F 2 branch failures	4C	RB
96A	Acer negundo	М							Exempt tree	5	Ex
97	E. saligna	ОМ	30	18	200	180	15.0	4.2	P – 4 trunks, 3 dead. Live branch failure. DW	4C	RB
98	E. saligna	М	30	24	102	114	12.2	3.5	G but failed branch at 10m. DW <10%	2D	К
98A	E. saligna	М	30	8	62	69	7.4	2.8	G	2	RB
98B	Not found										_
99	S. glomulifera	М	20	12	90	100	10.8	3.3	G	2	K
99A	Morus nigra	М							Exempt tree	5	RB
99B	Persea americana	М	5	6	20	23	2.4	1.8	G – fruit tree	3 (5)	K
99C	Persea americana	М	6	6	16	20	2.0	1.7	G – fruit tree	3 (5)	К
99D	Macadamia tetraphylla	М	9	12	28	30	3.4	2.0	G – fruit tree	3 (5)	K
100	S. glomulifera	М	30	18	102	117	12.2	3.5	G – DW <10%	2	K
100A	Olea europaea	М							Exempt tree	5	Ex
101	S. glomulifera	М	30	20	117	131	14.0	3.7	$G - DW \leq 10\%$	2	K
102	Quercus robur	М	20	24	113	121	13.6	3.6	G – mid canopy branch failures (8), Trunk hollows. DW. Hanger	2D	K
102A	Camellia sasanqua	М	5	5	29	40	3.5	2.3	F – multi trunks. Weed covered	3	K

102B	P. undulatum	М	8	8	26	27	3.1	1.9	$G - \frac{1}{4}$ covered with weeds	3	RB
102B	P. undulatum	M	10	8	39	42	4.7	2.3	G	2	RB
103	P. undulatum	M	7	8	29	30	3.5	2.0	F – suppressed form by T 102 & 103	3	RB
104	E. saligna	M	20	8	66	69	7.9	2.8	F – hanger, dead branch at 4 & 6m.	2D	K
									P – termites, 2 major trunk failures, trunk injury @ 7m with decay. Only small canopy remaining.		K
106	E. saligna	М	25	20	200	180	15.0	4.2		4D	
107	S. glomulifera	М	12	8	40	44	4.8	2.3	G	2	RB
107A	Michelia figo	М	7	7	45	68	5.4	2.8	F – weed covered	3	К
107B	P. undulatum	М	8	10	27	30	3.2	2.0	G	2	RB
107C	S. glomulifera	М	8	5	22	32	2.6	2.1	G. Privet beside (Noxious weed)	2	K
107D	L. sinense	М				-			Noxious weed - Exempt	5	Ex
107E	L. sinense	М							Noxious weed - Exempt	5	Ex
107F	L. sinense	М							Noxious weed - Exempt	5	Ex
107G	Brachychiton x acerifolius	М	6	3	14	15	2.0	1.5	G	2	K
108	P. undulatum	М	10	8	31	40	3.7	2.3	G – suppression to W	3	K
109	P. undulatum	М	9	6	58	62	7.0	2.7	G – suppression to E	3	K
110	S. glomulifera	М	8	6	39	40	4.7	2.3	G – suppression to E	3	K
111	E. saligna	М	25	10	56	62	6.7	2.7	G	2	K

											K
112	S. glomulifera	М	16	12	127	127	15.0	3.7	G – DW <10%. Suppression to S	3	
112	5. gioniungera	101	10	12	127	127	10.0	5.7		5	К
113	S. glomulifera	М	20	16	117	114	14.0	3.5	G – suppression to N & S	3	
114	S. glomulifera	М	18	18	200	158	15.0	4.0	G – suppression to N	3	К
115	E. saligna	М	20	16	110	115	13.2	3.5	G	2	RB
115A	E. saligna	М	9	2	15	18	1.8	1.6	G	2	RB
115B	Salix babylonica	М	5	5	19	24	2.3	1.8	F	3 (5)	Ex
116	S. glomulifera	М	10	10	59	64	7.1	2.7	G	2	K
	Cupressus								Exempt		K
117	sempervirens	М							Exempt	5	
117A	Dead	D							Exempt	5	Ex
118	Pinus radiata	М							Exempt	5	Ex
118A	P. undulatum	М	7	5	18	23	2.2	1.8	G	2	К
118B	L. lugustrum	М							Noxious weed - Exempt	5	Ex
119	Acmena smithii	М	16	16	59	67	7.1	2.8	G	2	К
120	Not found										
121	Not found										
122	Dead tree	D							Exempt	5	Ex
											Ex
122									Noxious weed - exempt		
(area)	L. sinense	М								5	
	Phoenix								G		K
123	dactylifera	М	9	5	38	45	4.6	2.4		2	
100.4				10		70		2.0	$P - \frac{1}{2}$ dead		RB, also structurally defective
123A	Schinus molle	OM	8	12	66	79	7.9	3.0		4A	Ex
1220	I lusidum	М							Noxious weed - exempt	5	EX
123B	L. lucidum	IVI								5	

-											
123C	L. lucidum	М							Noxious weed - exempt	5	Ex
123D	L. sinense	М							Noxious weed - exempt	5	Ex
123E	Camellia sasanqua	М	5	6	39	50	4.7	2.5	G	2	K
123F	L. lucidum	М							Noxious weed - exempt	5	Ex
123G	L. lucidum	М							Noxious weed - Exempt	5	Ex
123H	Camellia sasangua	M	6	7	30	40	3.6	2.3	G	2	K
1231	L. lucidum	M							Noxious weed - Exempt	5	Ex
123J	P. undulatum	М	6	4	12	19	2.0	1.6	F – leaning at 45 degrees & suppressed	4C	RB
124	Laurus nobilis	М	12	12	52	56	6.2	2.6	$P - \frac{1}{2}$ dead	4A	К
125	Lagerstroemia indica	М	7	8	46	60	5.5	2.7	G	2	K
126	Lagerstroemia indica	М	8	8	28	34	3.4	2.1	G	2	K
127	Phoenix dactylifera	М	12	6	47	55	5.6	2.6	G	2	К
127	Toona ciliata	M	18	18	60	70	7.2	2.8	G	2	К
128A	Dead tree	D							Dead - exempt	5	Ex
129	S. glomulifera	М	18	12	50	58	6.0	2.6	F – G. DW & some canopy suppression	3	K
	S. glomulifera	М	12	5	25	29	3.0	2.0	F – G. DW <10%. Suppressed	3	K

		1	1							1	
130	S. glomulifera	М	18	18	90	98	10.8	3.3	G – DW <10%. Suppressed	2	K
130A	Dead	D							Dead tree covered in Ivy, Exempt	5	Ex
131	Not found										
	ž								F - G. DW < 10%, Dead branch stub		К
									at 7m. Self-correcting trunk		
131A	Eucalyptus sp.	М	25	12	68	77	8.2	3.0		3	
132	E. globoidea	М	26	18	66	76	7.9	2.9	$F - DW \leq 10\%$	3	K
132A	S. glomulifera	М	16	8	45	60	5.4	2.7	F – DW <10%, Suppressed form	3	K
133	P. undulatum	М	8	6	34	45	4.1	2.4	F – suppressed from	3	K
134	Pinus radiata	М							Exempt tree - St	5	K
134A	P. undulatum	М	5	3	15	17	2.0	1.6	G - St	2	K
134B	P. undulatum	М	4	3	14	15	2.0	1.5	G-St	2	K
135	S. glomulifera	М	16	12	85	95	10.2	3.2	G - St	2	K
136	S. glomulifera	М	9	3	32	48	3.8	2.4	G – St	2	K
136A	Pinus radiata	М							Exempt tree – St	5	K
137	E. saligna	М	9	4	28	30	3.4	2.0	P form – OHPL pruning – St	3	K
137A	Dead tree	D							Dead – exempt - St	5	Ex
137B	E. paniculata	М	5	2	19	20	2.3	1.7	F – P, OHPL pruning – St	3	K
137C	Dead tree	D							Dead – exempt – St	5	Ex
137D	S. glomulifera	М	5	2	20	22	2.4	1.8	F – P, OHPL pruning – St	3	K
137E	S. glomulifera	М	5	2	16	20	2.0	1.7	F – P, OHPL pruning - St	3	K

[-	1	1	-	1	-				
137F	S. glomulifera	М	5	2	16	19	2.0	1.6	F – P, OHPL pruning – St	3	K
137G	P. undulatum	М	5	4	17	20	2.0	1.7	F – P, OHPL pruning – St	3	K
138	Cinnamomum camphora	М							Exempt tree – St	5	K
138A	P. undulatum	М	6	6	18	21	2.2	1.7	F - OHPL pruning – St	3	K
138B	Cinnamomum camphora	М							Exempt tree – St	5	K
139	P. undulatum	М	8	8	26	30	3.1	2.0	F – weed covered	3	K
140	S. glomulifera	М	8	6	29	40	3.5	2.3	F – P, OHPL pruning – St	3	K
140A	S. glomulifera	М	8	6	29	40	3.5	2.3	F – P, OHPL pruning – St	3	К
141	Acmena smithii	М	7	5	29	27	3.5	1.9	F – climber in canopy	3	RB
142	L. lucidum	М							Exempt tree	5	Ex
143	L. lucidum	М							Exempt tree	5	Ex
143A	Acacia decurrens	М	6	6	32	35	3.8	2.1	$P - \frac{1}{2}$ dead	4A	RB, also structurally defective
143B	Casuarina torulosa	М	5	3	12	20	2.0	1.7	F – P, OHPL pruning - St	3	K
143C	Dead tree	D				-			Dead tree - exempt	5	Ex
144	L. lucidum	М							Noxious weed - Exempt	5	Ex
145	P. undulatum	М	5	6	19	21	2.3	1.7	G - St	2	K
146	Not found										
147	P. undulatum	М	7	8	41	46	4.9	2.4	G - St	2	K
148	P. undulatum	М	7	5	22	25	2.6	1.8	G - St	2	К

149	Pinus radiata	М	10	8	30	38	3.6	2.2	Exempt tree	5	К
149A	P. undulatum	М	7	4	21	22	2.5	1.8	G	2	К
149B	P. undulatum	М	5	3	14	15	2.0	1.5	G	2	K
150	E. paniculata	М	7	4	26	30	3.1	2.0	F – P, OHPL pruning - St	3	K
151	P. undulatum	М	8	8	21	28	2.5	1.9	F – P, OHPL pruning – St	3	К
152	P. undulatum	М	8	8	42	51	5.0	2.5	F – P, OHPL pruning – St	3	К
153	Dead tree	D							Exempt	5	Ex
154	Pinus radiata	М							Exempt - St	5	Ex
155	P. undulatum	М	6	6	22	40	2.6	2.3	G - St	2	К
156	E. paniculata	М	6	6	38	44	4.6	2.3	P form – lots epicormic - St	4C	К
157	E. paniculata	М	16	12	52	60	6.2	2.7	G - St	2	K
158	E. paniculata	М	6	1	26	30	3.1	2.0	F – P, OHPL pruning - St	3	К
158A	Acacia decurrens	М	4	3	15	16	2.0	1.5	G - St	2	K
159	Not found										
160	Pinus radiata	М							Exempt tree	5	Ex
161	Pinus radiata	М							Exempt tree	5	Ex
161A	P. undulatum	М	5	3	10	14	2.0	1.5	F	3	RB
161B	L. lucidum	М							Exempt tree	5	Ex
162	S. glomulifera	М	10	6	32	35	3.8	2.1	F – suppressed form	3	К
163	Not found	-									
163A	L. lucidum	М							Exempt tree	5	Ex
163B	P. undulatum	М	6	6	21	24	2.5	1.8	G	2	RB
164	Dead tree	D							Exempt tree	5	Ex

165	Dead tree	D							Exempt tree	5	Ex
166	Not found										
166A	S. glomulifera	М	8	4	22	30	2.6	2.0	P form suppressed	3	RB
167	P. undulatum	М	7						Blown over	4D	RB, also structurally defective
168	Pinus radiata	М							Exempt tree - St	5	Ex
169	S. glomulifera	М	8	5	35	50	4.2	2.5	G, OHPL pruning (topped) – St	3	K
170	S. glomulifera	М	6	4	34	50	4.1	2.5	G, OHPL pruning (topped) – St	3	K
170A	Not found										
171	S. glomulifera	М	10	8	45	52	5.4	2.5	G	2	K
171A	P. undulatum	М	7	5	25	27	3.0	1.9	G	2	K
171B	P. undulatum	М	3	2	21	24	2.5	1.8	P form	3	K
171C	Acmena smithii	М	5	3	16	17	2.0	1.6	G	2	K
171D	Dead tree	D							Exempt tree	5	Ex
172	Pinus radiata	М							Exempt tree	5	Ex
173	Pinus radiata	М							Exempt tree	5	Ex
173A	P. undulatum	М	5	6	22	26	2.6	1.9	F - G	3	RB
174	Dead tree	D							Exempt tree	5	Ex
175	Dead tree	D							Exempt tree	5	Ex
176	Dead tree	D							Exempt tree	5	Ex
176A	L. lucidum	М							Noxious weed - Exempt	5	Ex
177	Dead tree	D							Exempt tree	5	Ex

Terms used in Tree Survey & Report:

Age Class

(Y) – Young refers to a well-established but juvenile tree. Less than 1/3 life expectancy (SM) – Semi-mature refers to a tree at growth stages between immaturity and full size. A tree has reached First Adult Form i.e. displays adult characteristics. 1/3 to 2/3 life expectancy (M)- Mature refers to a full-size tree with some capacity for future growth. Older than 2/3 life expectancy

(OM) – **Over-mature** refers to a tree approaching decline or already declining. Older than 2/3 life expectancy and showing signs of irreversible decline.

Health refers to a tree's vigour, growth rate, disease and/or insects.

Vitality summarises observations about the health and structure of the tree on a scale of: (G) Good, (F) Fair, (P) Poor, (P) Poor & (D) Dead.

Good: Tree is generally healthy and free from obvious signs of structural weaknesses or significant effects of pests and diseases or infection;

Fair: Tree is generally vigorous although has some indication of being adversely affected by the early effects of disease or infection or environmental or mechanical damage. Appropriate tree maintenance can usually improve overall health and halt decline;

Poor: Tree in decline and is not likely to improve with reasonable maintenance practices or has a structural fault such as bark inclusion;

Dead: Tree no longer capable of sustained growth.

Deadwood (DW) – deadwood found in canopy as a percentage.

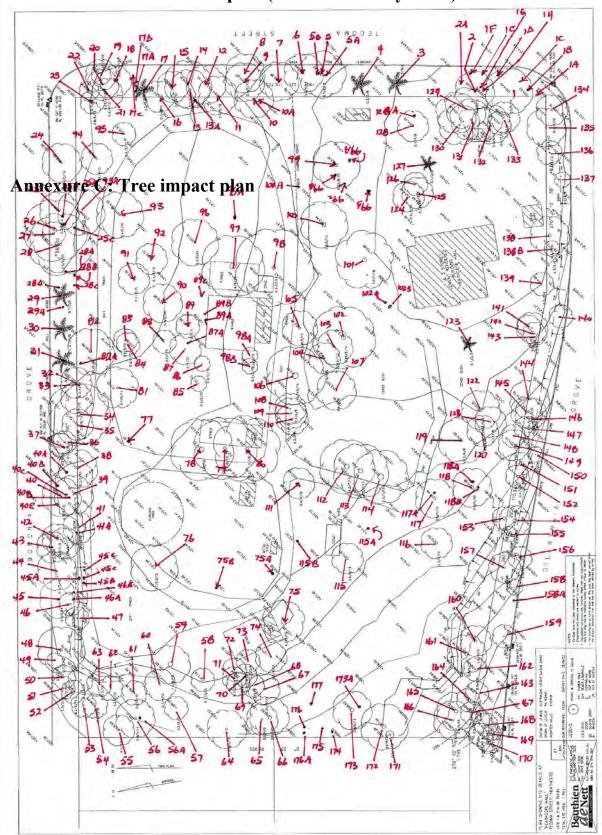
Over Head Power Lines (OHPL) – upper canopy pruned to accommodate power lines at a given height.

Next door tree (ND) – tree located in the adjoining site.

Height expressed in metres refers to estimated overall height of tree.

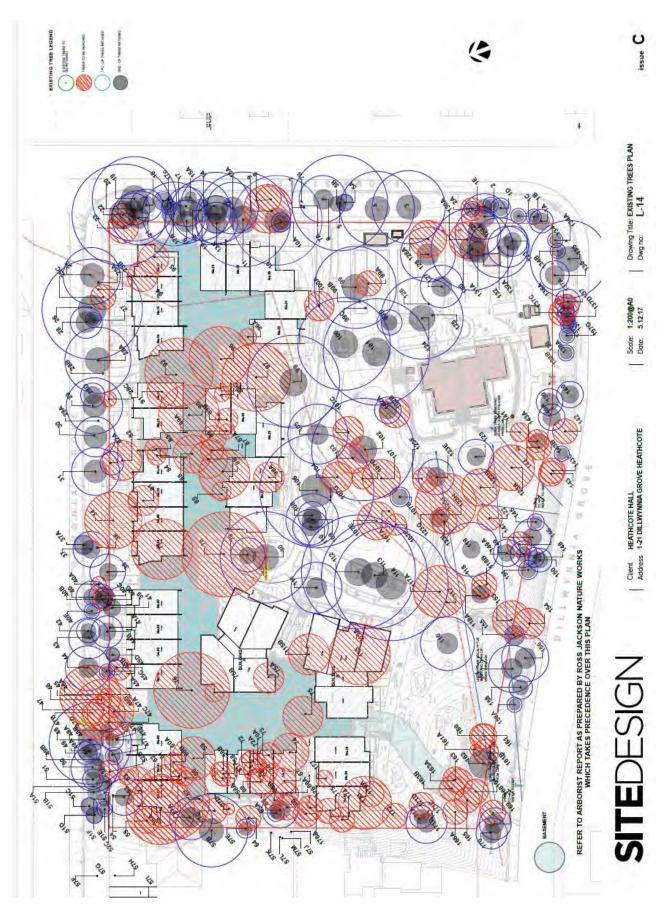
Spread expressed in metres refers to estimated spread of crown at the drip line.

(DBH) Diameter at Breast Height expressed in millimetres refers to the trunk diameter at 1.4 metres above ground level. Where there are multiple trunks the combined diameter has been calculated in terms of Appendix A - AS 4970 - 2009, shown in brackets.


(DRB) Diameter above Root Buttress expressed in millimetres refers to the trunk diameter above root buttress.

(TPZ) Tree Protection Zone & Structural Root Zone (SRZ) as defined by AS 4970 – 2009 Section 3

(ULE) The various ULE categories indicate the useful life anticipated for an individual tree or trees assessed as a group. Factors such as the location, age, condition and vitality of the tree are significant to the determination of this rating. Other influences such as the tree's effect on better specimens and the economics of managing the tree successfully in its location are also relevant to ULE (Barrell 1993, 1995, 2001).


ULE RATING (UPDATED 1/4/01) BARRELL

1.Long ULE: Trees that appear to be retainable at the time of assessment for more than 40 years with an acceptable level of risk.	2.Medium ULE: Trees that appear to be retainable at the time of assessment for more than 15-40 years with an acceptable level of risk.	3.Short ULE: Trees that appear to be retainable at the time of assessment for more than 5-15 years with an acceptable level of risk.	4.Remove: Trees that should be removed within the next 5 years.	5.Small, young or regularly pruned: Trees that can be reliably moved or replaced.
(A) Structurally sound trees located in positions that can accommodate future growth	(A) Trees that may only live between 15 and 40 more years.	(A) Trees that may only live between 5 and 15 more years.	(A) Dead, dying, suppressed or declining trees because of disease or inhospitable conditions.	(A) Small trees less than 5 Metres in height.
(B) Trees that could be made suitable for retention in the long term by remedial tree care.	(B) Trees that could live for more than 40 years but may be removed for safety or nuisance reasons.	(B) Trees that could live for more than 15 years but may be removed for safety or nuisance reasons.	(B) Dangerous trees because of instability or recent loss of adjacent trees.	(B) Young trees less than 15 years old but over 5 metres in height.
(C) Trees of special significance for historical, commemorative or rarity reasons that would warrant extraordinary efforts to secure their long term retention.	(C) Trees that could live for more than 40 years but may be removed to prevent interference with more suitable individuals or to provide space for new planting.	(C) Trees that could live for more than 15 years but may be removed to prevent interference with more suitable individuals or to provide space for new planting.	(C) Dangcrous trees because of structural defects including cavities, decay, included bark, wounds or poor form.	(C) Formal hedges and trees intended for regular pruning to artificially control growth.
	(D) Trees that could be made suitable for retention in the medium term by remedial tree care.	(D) Trees that require substantial remedial tree care and are only suitable for retention in the short term.	(D) Damaged trees that are clearly not safe to retain.	
			(E) Trees that could live for more than 5 years but may be removed to prevent interference with more suitable individuals or to provide space for new planting.	
			(F) Trees that are damaging or may cause damage to existing structures within 5 years.	
			(G) Trees that will become dangerous after removal of other trees for the reasons given in (A) to (F).	
			(H) Trees in categories (A) to (G) that have a high wildlife habitat value and, with appropriate treatment, could be retained subject to regular review.	

Annexure B: Tree location plan (hand marked by JNW)

Annexure C: Tree impact plan

Annexure D: Typical trunk protection

Construction & Environmental Management Plan

Heathcote Hall Development 1-21 Dyllwynnia Gr, Heathcote

Revision	Status	Date
А	For DA Submission	1 st December 2017

 $\mathsf{SSPP}\ (\mathsf{Sydney}\ \mathsf{South})\ \mathsf{revised}\ \mathsf{and}\ \mathsf{additional}\ \mathsf{documentation}\ \mathsf{-}\ (\mathsf{2017SSH019})\ \mathsf{Part}\ \mathsf{7}$

Table of Contents

Section	Item
	General Terms
1.	Introduction
2.	CEMP 'Action List'
3.	Traffic Management Plan
4.	Construction Waste Management Plan
5.	Erosion and Sediment Control
7.	Air Quality
8.	Workplace Risk Management
9.	Site Management Plan
	Appendix A: Site Establishment Plan

Issue Register

Employee Name	Employee Signature Date		
Robert Orth	VI VIGEN	1/12/17	

1. Introduction

This Construction & Environmental Management Plan (CEMP) has been developed for inclusion in the State Significant Development Application (SSDA) to address the construction items related to the proposed development at Heathcote Hall, 1-21 Dyllwynnia Grove, Heathcote. In due course, the CEMP will address the Development Consent conditions imposed in relation to construction and development works at HEATCHOTE HALL.

In addition, the CEMP outlines the actions and staging of construction deemed necessary to address the concerns of neighbouring properties and authorities whilst maintaining a safe and productive construction site.

The CEMP is a positive commitment by Fuzortinn to ensure that the statuary obligations are fulfilled and that the project is delivered to the highest Fuzortinn guality, safety and environmental standards.

The responsibility for the management of this document and the actions contained therein lies with the Construction Manager for the Project. The CEMP will be monitored throughout the project construction phase until such time as all actions on the CEMP Action List are completed.

1.1 Project Overview

The Heathcote Hall site is strategically located approximately 20km south of the Sydney CBD, 20km north of Wollongong and within 500m of Heathcote Railway Station. The site, with an overall area of some 1.7 hectares, is located within the Sutherland Shire local government area (LGA). Refer to Figure 1 below for a graphic representation of the site location and context.

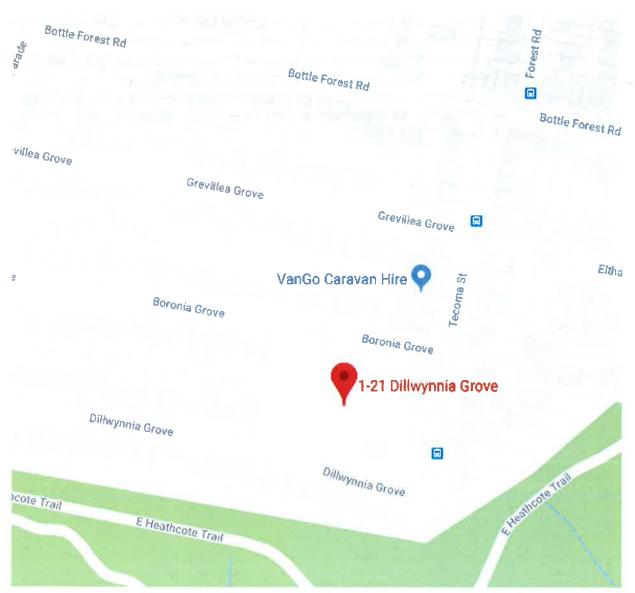


Figure 1: Site Location

Figure 2 provides an aerial image of the HEATCHOTE HALL site.

A summary of the proposed development is detailed as follows:

- Construction of a two level basement carpark for both residents and visitors of the site.
- Construction of thirty five (35) two (2) storey townhouses.
- Construction of two (2) three (3) storey walkup unit blocks containing a total of twenty (20) units.
- Restoration and adaptive re-use of the existing Heathcote Hall and surrounding pleasure gardens.
- Extension and augmentation of physical infrastructure / utilities for the development, including provision of new substation.

Figure 2: Aerial View of the site

1.2 Hours of Work

The anticipated hours of work pending Authority approval for construction works, including the delivery of materials to and from the sites within the precinct, are as follows:

- Between 7:00 am and 5:00 pm, Mondays to Fridays inclusive.
- Between 7:00 am and 3:00 pm, Saturdays.
- No work will be carried out on Sundays and Public Holidays.

Works outside these times are subject to agreement and approval by Council or the relevant approving authority.

1.3 Contact Details

The Construction Manager for the Project is Nathan Fuz. Contact details are listed below. M: 0410 570071; E: nathan@cdcommercial.com.au

2 CEMP 'Action List'

The "CEMP Action List" forms the basis of the HEATCHOTE HALL CEMP. The Action List responds to a series of anticipated DA conditions that are to be addressed prior to and during the construction phase of the project. They further address any Authority requirements as well as taking into consideration the concerns of neighbouring building occupiers.

The Action List provides a means by which responsibilities of the project team can be readily identified and monitored.

In addition to the Action List are a series of attachments which contain more detailed information in the form of checklists, registers, templates and reports. The attachments contain the information and tools that must be implemented during the construction phase in order to close out the specific items and ultimately satisfy the DA conditions associated with the project.

3 Traffic Management Plan

3.1 Introduction

McLaren Traffic Consultants have been engaged as the traffic management consultant for the project and they will compile a Traffic Management Plan (TMP) for the HEATCHOTE HALL precinct.

The traffic management plan for the project shall deal with the issues of construction traffic, their effect on the surrounding environment and be prepared prior to the issue of the Construction Certificate.

3.2 Access and Egress to site

Vehicles

During mobilisation and site excavation, construction related traffic will enter the site primarily off Dyllwynnia Grove and exit primarily via Boronia Grove. This will allow sharing of vehicle movements between the two main access roads as well as assist in avoiding congestion. Refer to attached Access and Egress Plan – Appendix A.

Exit points on each site will be manned by qualified Traffic Controllers who will be responsible for managing both vehicular and pedestrian traffic movements.

A A-Class hoarding will be erected around the perimeter of the site and will be capable of having graphics installed.

Public Transport Access

All site workers and visitors to site shall be actively encouraged to take public transport to and from the site. Heathcote train station is located within 500 metres from the site and will enable the majority of site workers to travel by train.

Pedestrians

All site workers and visitors shall enter and exit the sites via one of the following entry/exit points:

• Secured door to Site Compound on Tacoma Rd..

3.3 Loading and Unloading of Materials

There will be several designated areas for deliveries and the loading / unloading of materials on the site. Refer to Appendix A.

- All loading and unloading operations are to comply with statutory requirements;
- No materials will be stored on public footpaths or roads;
- All entering and exiting of vehicles to work zones shall be supervised by a Traffic Controller. Flow to all lanes of Traffic shall remain mostly unimpeded in accordance with Council and DA requirements.
- Should any lane closures be required, a relevant traffic management plan will be compiled along with any required permits and stakeholders / residents notified where required.
- As noted above, these points are all subject to Council and Authority approval and, these proposals may require amendment prior to the works being undertaken.

3.4 Truck and Vehicle Routes:

The routes for all trucks and vehicles proceeding to and exiting from the sites within the precinct is identified in Appendix A.

All major deliveries will enter and exit the HEATCHOTE HALL via main arterial roads. Signage will be installed within the precinct to direct all deliveries to the correct area.

3.5 Disruption to Traffic Flows

The primary goal of the TMP will be to mitigate any disruptions to traffic flow within HEATCHOTE HALL and in the surrounding areas. Trucks and vehicles using Dyllwynnia and Boronia Groves must be marshalled within the site boundaries and will not be permitted to stop or wait in either roadway prior to entering site.

All non-critical deliveries will be scheduled outside peak traffic periods where possible.

3.6 Pedestrian and Traffic Management

Signage will be established at the precinct entry and exit points to alert pedestrians and other drivers to the movement of construction traffic. Where required, traffic control personnel will control the movement of large vehicles to and from the sites.

Visitors to the sites will be escorted at all times by Fuzortinn Site Staff and will be provided with a defined entry path from the point of entry.

3.7 Site Safety Plan

A Fuzortinn Site Specific Workplace Risk Management Plan (WRMP), will be implemented prior to the commencement of construction and be updated from time to time to reflect the current stage of site works.

All works throughout the construction process will be required to comply with the TMP, Statutory Requirements, and the Fuzortinn WRMP.

3.8 Site Specific Issues

3.8.1 Public Pedestrian Access

Pedestrian access and movement within HEATCHOTE HALL will be of high importance during all stages of construction. Pedestrian access routes will be identified and highlighted in the TMP. All pedestrian routes shall be clearly defined with signage and delineated from vehicular traffic routes where required.

3.9 Construction Staging, Description and Duration

The following is a summary of the proposed construction staging and estimated durations for the project;

Element	Description	Duration
1. Site Establishment	Set up hoardings and site amenities	1 month
2. Earthworks	Foundation Piling, bulk excavation and detailed excavation	3 months
3. Construction	Construction of townhouses and residential flat buildings including refurbishment and adaptive reuse works to Heathcote Hall.	18 months

3.10 Plant & Equipment

The following is a summary of the types of plant and equipment that will be utilized on the project:

- Articulated flatbed truck for delivery of site sheds and hoarding materials.
- Articulated float / low loader for delivery of earth moving equipment such as excavators, dozers, dump trucks and piling rigs.
- Truck and trailers for the exportation of excavated material off site.
- Concrete trucks for delivery of ready mix concrete.
- Mobile cranes, of various size, for erection of site amenities, tower cranes and miscellaneous lifting.
- Prime mover and enclosed flatbed trailer for delivery of materials.
- Medium rigid vehicles, small rigid vehicles, vans and couriers to deliver smaller materials.

3.11 Truck Movements

- Export off site of excavated materials by truck and trailer for Building 2.
- Concrete trucks for piling / construction of basement walls.

4 Construction Waste Management Plan

A Waste Management Plan will be developed if required. for the removal of waste generated by construction works on site. Periodic review of this waste management plan will be undertaken to ensure continual compliance with environmental regulations and standards. Waste types likely to be generated on the site include the following:

- General Waste;
- Putrescible waste (lunch room waste from site personnel);
- Cardboard & White Paper (amended plans & drawings);
- Bottles, Cans & Plastics;
- Steel / Concrete / Bricks / Tiles / Timber & Gyprock.

The waste subcontractor will supply builder's waste bins for the onsite collection and storage of general waste material.

Upon arrival at the facility, the waste is sorted into various categories. Once the product has been sorted into its various categories, the facility then processes the individual recyclable waste streams into reusable products available for re-sale to the public as described below:

- Concrete is crushed, pulverized and sold as recycled aggregate;
- Bricks are also crushed, pulverized and sold as recycled road base;
- Timber is chipped and sold as mulch for garden beds and ground cover;
- Steel is sent to either Metalcorp or Simsmetal for recycling;
- Plasterboard is broken down to a gypsum product and sold to farmers as a soil additive;
- Cardboard & White Paper Recycling to Amcor for recycling;
- Bottles, Cans & Plastics Recycling to Visy for recycling.

Waste generated at the workplace shall be avoided or recycled wherever practical. Fuzortinn will implemen a Waste Management Plan and it is described as follows:

- material is reused wherever practicable, in particular top soil
- the establishment of a workplace waste management area(s) for sorting and segregating waste where available space allows;
- participation in waste minimisation training for all workplace personnel;
- recyclable materials are reprocessed wherever practicable, e.g. plasterboard off cuts, steel reinforcement and concrete;
- contractors identify areas where they can reduce waste and reuse materials in their respective trades (waste avoidance initiatives to be provided by each Service Provider in the JSEA);
- prescribed waste, e.g. hazardous or contaminated material, asbestos, aqueous waste (paint washout residue/sludge), shall be removed by a licensed contractor and dockets retained at the workplace for audit verification purposes;
- pollution and damage to the environment is prevented; and
- The safety and health of employees, Service Providers and the public is protected.

The figure below details the general principles for prevention of waste.

Figure 3: Waste prevention principles

SSPP (Sydney South) revised and additional documentation - (2017SSH019) Part 7

5 Erosion & Sediment Control

An Erosion and Sediment Control Plan will be implemented on the project.

Below are items that as a minimum will be included in the Erosion and Sediment Control Plan:

- All stormwater pits around the perimeter of the site will be covered using filter fabric and sand bags.
- Filter fabric and sand bags shall also be installed around piling activities which are adjacent to public roadways or pedestrian footpaths in order to contain spoil arisings. These shall be regularly maintained to ensure no spoil or concrete migration onto public areas.
- During excavation, a wash down facility will be installed to wash down the tyres and wheel arches of any trucks exiting the excavation zone.
- All construction work zones and loading areas that are trafficked by vehicles are to be regularly swept / washed-down to maintain a clean surface and keep surrounding roads clean.
- Stockpiling of excavated material shall be carried out in a manner to limit sediment migration and water runoff. Stockpiled material to be appropriately covered where deemed necessary to prevent erosion and / or odour migration.
- The use of temporary sediment / silt fencing to ensure erosion and sediment particles do not enter public access ways or surrounding waterways.
- Vehicles leaving the site will secure and cover their loads. All trucks will be inspected prior to leaving the site (where applicable)
- All roads and pedestrian footways surrounding the site will be swept clean as required to remove any debris associated with the works on the site.
- A Dewatering Management Plan shall be compiled to outline the requirements for dewatering and any water treatment that may be required. Following any required treatment of water and verification testing, it shall be pumped to sewer and/or stormwater in accordance with Office of Water and Sydney Water requirements.

7 Air Quality

Air quality monitoring will be carried out if required throughout the excavation phase of the Project. This will be limited to excavation phases of the Project with additional monitoring required being assessed on a monthly basis. Dust created by construction related activities, typically becomes more prominent during windy conditions, and will be dealt with by way of water suppression. Other measures for dust suppression include:

- Stockpiles of spoil to be covered and/or emulsion spray added to stockpile;
- In windy conditions, the frequency of water suppression will be increased;
- The construction site will be maintained and kept clean. Where suitable, the use of mechanical sweepers and covered waste bins will be utilised;
- Completed surfaces will be kept clean;
- Controlled site access will be maintained with vehicle wash down / clean down facilities to be established to maintain access roads;
- All materials transported from site in trucks will be appropriately covered.

8 Workplace Risk Management

8.1 Introduction

Fuzortinn is fully committed to providing a safe working environment. Each Work Place Risk Management Plan (WRMP) requires that equipment, workplaces and practices comply with relevant regulations and standards. Regular and ongoing reviews of these standards will be conducted and where higher standards are practical and desirable, they will be adopted. In addition the company will:

- Provide adequate resources to satisfy this policy.
- Identify, control and reduce work-related hazards and risks that may produce injury, illness or asset damage.
- Identify, quantify and control to safe levels, those chemicals and physical agents in the workplace capable
 of causing ill health.
- Promote environmental, health, safety and the welfare of employees and sub-contractors while respecting the privacy of individuals.
- Provide information, instruction and training for employees to increase their personal understanding of workplace hazards, promote safe working practices and ensure contractors are aware of and satisfy the Groups HSE expectations.
- Consult employees and contractors in environmental, health and safety to reduce workplace hazards and risks.
- Consult with clients, industry bodies and others in the development of appropriate standards, control strategies and monitoring techniques, which comply, with the requirements of statutory authorities.
- Set short and long term goals in occupational health and safety management, and review performance against these goals.

Fuzortinn Management is responsible for raising the awareness of the responsibilities of all workers on the site in regards to workplace safety and the role they play in achieving a safe and healthy work environment. Fuzortinn employees and all other workers on the premises or site are responsible for working towards achieving and maintaining a healthy and safe workplace. The intent of this policy is to foster a culture within Fuzortinn employees and its subcontractors, raising health and safety awareness, and promoting active participation in the Health Safety and Environment (HSE) program.

8.2 Workplace Risk Management Plans (WRMP) and Job Safety & Environment Analysis (JSEA)

A key tool in the management of HSE on the project will be the continued improvement of both Fuzortinn's WRMP and each individual Job Safety & Environment Analysis (JSEA). This plan as a minimum includes the following:

- A description of the work to be undertaken;
- An identification of the foreseeable hazards associated with the works; and
- A description of the hazard control measures to be used.

A detailed site specific Workplace Risk Management Plan shall be developed and implemented by Fuzortinn prior to commencement of works and shall be updated as / when required.

9 Site Management Plan

9.1 Introduction

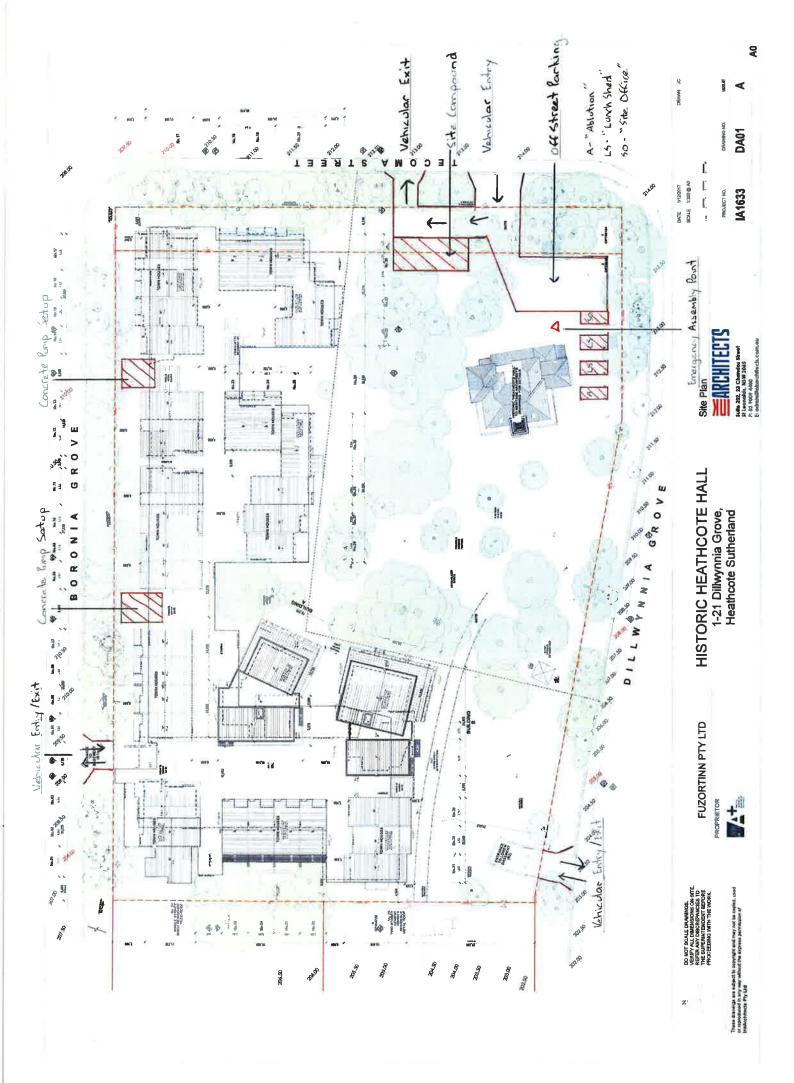
A Site Management Plan will be developed to outline the proposed phases of the construction work on site, outline the order of works, and assess Fuzortinn's impact and interaction with the surrounding community.

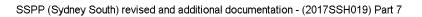
9.2 Construction Phases

The works have been broadly divided into the following phases:

- a. Site establishment;
- b. Civil excavation, piling and ground retention works;
- c. Remediation works to site; (if required)
- d. Structure;
- e. Façade & atrium roof works;
- f. Building fit out and finishes;
- g. Commissioning & handover works;
- h. Landscaping and public domain works.

9.3 Fire Protection Measures During Construction


Fuzortinn will comply with the requirements of the BCA and Australian standards during excavation and construction.


Specifically, E1.9 of the BCA requires the following:

 not less than one fire extinguisher to suit Class A, B and C fires and electrical fires must be provided at all times on each storey adjacent to each required exit or temporary stairway or exit.

Appendix A: Site Establishment Plan

Fuzortinn Detailed Environmental Site Investigation Report

1-21 Dillwynnia Grove Heathcote, NSW

4 January 2018

www.lgconsult.com.au

Fuzortinn

Detailed Environmental Site Investigation Report

> 1-21 Dillwynnia Grove Heathcote, NSW

> > 4 January 2018

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

Contents

Exe	ecutiv	e Summary	6
1.	Intro	oduction	8
	1.2	5	8 8 9
	1.3	Scope of Works	9
2.	Site	Description	13
	2.1 2.2 2.3	Site Identification Site Setting Site Condition	13 13 15
3.	Prev	vious Investigations	17
	3.1	Summary of Previous Investigations	17
4.	Cond	ceptual Site Model	19
	4.1	Potential Contamination Sources	19
	4.2	Contaminants of Potential Concern	19
	4.3	Exposure Pathway Evaluation	20
	4.4	Data Gaps	20
5.	Data	Quality Objectives	21
6.	Sam	pling and Analysis Methodology	26
	6.2	Scope of Works Sampling Rationale Soil Investigation Methodology Laboratory Analysis Soil Analyses	26 26 28 28 28 28
7.	Asse	essment Criteria	30
	7.1 7.2 7.2.1 7.3 7.4	•	30 30 32 32 33
8.	Qua	lity Assurance and Quality Control (QA/QC)	34

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

	8.1	Data Validation	34
	8.2	Data Useability	34
9.	Resu	Ilts	35
	9.1	Field Results	35
	9.1.1	Sub-Surface Observation and Condition	35
	9.1.2	VOC Screening	35
	9.2	Analytical Results	35
	9.2.1	Soil Analytical Results	35
10.	Cond	lusions and Recommendations	37
	10.1	Conclusions	37
	10.2	Recommendations	38
11.	Refe	rences	39
Lim	itatio	n Statement	40
Арр	endix	A – Proposed Development Plans	47
Арр	endix	K B – Data Validation	48
Арр	endix	C – Laboratory Reports	59

Figures

Attached

Figure 1 – Site Location Plan	42
Figure 2 – Site Layout	43
Figure 3 – Soil Sampling Locations	44

Tables

Main Text

Table 1 – Site Identification Details	13
Table 2 – Site Setting Information	13
Table 3 – Summary of Works Completed	17
Table 4 – Exposure Pathways	20
Table 5 – Data Quality Objectives	21
Table 6 – Summary of Data Quality Indicators AND & GROUNDWATER CONSULTING PTY LTD	24

LG17100_01 DESI 04-01-18

35

Table 7 – Generalised Stratigraphy

Attached

- Table A Soil Analytical Results
- Table B Soil RPD Results
- Table C Calculation of 95%UCL

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

Distribution of Copies

Revision	Copy no	Quantity	Issued to
1	1	1 PDF Copy	Robert Orth: Fuzortinn Pty Ltd

Printed:	4 January 2018	
Last saved:	4 January 2018 11:56 AM	
File name:	LG17100_01 DESI 04-01-18	
Author:	Gonzalo Parra	
Project manager:	Gonzalo Parra	
Name of organisation:	Fuzortinn Pty Ltd	
Name of project:	1-21 Dillwynnia Grove, Heathcote, NSW	
Name of document:	Detailed Environmental Site Investigation Report	
Document version:	Final	
Project number:	LG17100.01	

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

Executive Summary

Background

Land & Groundwater Consulting Pty Ltd (LG) has been engaged by Fuzortinn Pty Ltd to undertake a Detailed Environmental Site Investigation (DESI) at the site known as 1-21 Dillwynnia Grove, Heathcote, NSW.

LG understands that the site is proposed for re-development comprising refurbishment and restoration of Heathcote Hall Building; construction of 35×2 storey townhouses; construction of 2×3 storey apartment buildings with 20 units; construction of a 2-level basement car park; and landscaping including turf renewal and reinstatement of pleasure gardens, pathways, community kitchen gardens and orchard.

Soil samples were collected from 7 testpit and 20 soil bore locations across the site. Samples collected were analysed for total recoverable hydrocarbons (TRHs); benzene, toluene, ethylbenzene and xylene (BTEX); polycyclic aromatic hydrocarbons (PAHs); organochlorine pesticides (OCPs); organophosphate pesticides (OPPs); polychlorinated biphenyl (PCBs); metals (arsenic, cadmium, copper, chromium, lead, nickel, mercury and zinc) and asbestos. A total of 2 groundwater wells were installed as part of the DESI works.

Conclusions

Based on the findings of this DESI the following conclusions are provided:

- The surface fill materials comprised sand, gravel and clay with traces of demolition fragments, at the locations investigated. This fill was underlain by natural clay;
- The soils at the locations sampled and analysed did not contain concentrations of TRHs, BTEX, PAHs, OCPs, OPPs, PCBs and heavy metals that were greater than the Residential A and B land use criteria, at the time tested, with the following exceptions;
 - Concentrations of TRH C16-C34 less BTEX (F3) were above the EIL in sample TP3/0.2-0.3. However, further statistical assessment indicated that the isolated occurrence of elevated TRH impact at TP3/0.2-0.3 is not considered significant at the site.
- Concentrations of chromium were above the HIL A in samples S9 and SH3 and lead concentrations were above the HIL A in samples S10 and SH3. However, it is considered that residential HILs at the site have limited application due to LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

significant sealing expected on site surfaces and landscaping areas. Also, consideration for remediation drivers would not be required where there is no associated human health risk.

- It is further noted that the vast majority of these soils will be removed during the proposed basement excavation and risks to site occupants and vegetation will be further reduced. Therefore, LG considers that the TRH, chromium and lead impact identified will not adversely affect the suitability of the site for the proposed use.
- Asbestos fibres (amosite and chrysotile) were detected above the HIL A in sample TP5/0.2-0.3, collected within the fill material at Testpit 5;
- Bonded cement fragments collected from surfaces across the site for laboratory verification analysis confirmed the presence of asbestos containing materials in samples PACM1 and PACM2, which can be referred as ACMs; and
- The assessment results indicate that the site subject to this DESI can be made suitable for Residential A and B land use, consistent with a Zone E4 Environmental Living zoning, provided that soils contaminated with asbestos are removed and disposed off-site appropriately.

Recommendations

Based on the conclusions above the following recommendations are provided:

 Remediation and validation works be undertaken, in order to safely remove Asbestos Hotspot TP5/0.2-0.3 and bonded ACMs identified to demonstrate that the remaining excavations and excavated soils meet NSW EPA requirements for Residential A and B land use.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

1. Introduction

1.1 Background

Land & Groundwater Consulting Pty Ltd (LG) has been engaged by Fuzortinn Pty Ltd (Fuzortinn) to undertake a Detailed Environmental Site Investigation (DESI) at Lots 1 and 2 in Deposited Plan (DP) 725184, known as 1-21 Dillwynnia Grove, Heathcote, NSW (hereafter referred as 'the site'). The location of the site is shown in **Figure 1**.

This report should be read in conjunction with the following document:

• GHD (2017) *Phase 1 Contamination Assessment, Heathcote Hall Services.* Dated 27 October 2017. Prepared for Fuzortinn Pty Ltd. Ref: 2316195.

The DESI was undertaken with respect to the staged investigation approach outlined in *State Environmental Planning Policy No. 55 - Remediation of Land* (SEPP 55 - Ref 1) and the National Environment Protection Council (NEPC) *National Environment Protection (Assessment of Site Contamination) Measure 1999* (amended 2013) (NEPC, 2013 - Ref 2).

This report was prepared in general accordance the NSW Office of Environment and Heritage (OEH) *"Guidelines for Consultants Reporting on Contaminated Sites"* (2011).

1.1.1 Proposed Development

LG understands that the site is proposed for re-development comprising the following works:

- Refurbishment and restoration of Heathcote Hall Building;
- Construction of 35 x 2 storey townhouses;
- Construction of 2 x 3 storey apartment buildings with 20 units;
- Construction of a 2-level basement car park for 134 vehicles and 7 motorcycle spaces. Basement car parking accessed from Boronia Grove and Dillwynnia Grove; and
- Landscaping including turf renewal and reinstatement of pleasure gardens, pathways, community kitchen gardens and orchard.

The proposed development plans are provided in Appendix A.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

1.2 Objectives

The specific objectives of the DESI were to:

- Provide an assessment of potential soil and groundwater contamination resulting from onsite or offsite sources, during past or present activities;
- Investigate the potential areas of environmental concern previously identified by means of targeted sampling and laboratory analysis of relevant contaminants;
- Assess the site suitability for Residential A and B land use; and
- Assess the need for further investigations and/or remedial action, if any.

1.3 Scope of Works

The following works were undertaken to meet the objective described above:

- Reviewed findings from the preliminary investigation undertaken by GHD (GHD, 2017), so that the preliminary findings could be relied upon and used in conjunction with the data generated from this DESI, to assess potential contamination at the site;
- Prepared a sampling and analytical plan for the following areas of environmental concern (AECs):
 - AEC 1: Potential weathering of hazardous building materials, demolition of former stable structures of unknown construction and storage of building materials;
 - AEC 2: Maintenance of vehicles and storage of waste oils;
 - AEC 3: Potential application of pesticides around buildings and former stables; and
 - AEC 4: Imported fill materials of unknown quality, quantity and origin.
- Prepared a health, environment and safety plan (HESP) for all site related activities, to identify the potential risk associated with the works and to document and implement control measures to manage and mitigate the risks;
- Conducted dial before you dig search to assess for the presence of underground services and pipework;

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

- Undertook field investigations which included the following works:
 - Given that the site covers an area of approximately 17,500 m² (1.75 ha), a total of 27 soil sampling locations were investigated in accordance with the Minimum Sampling Points Required for Site Characterisation, published under the NSW EPA (1995) "Sampling Design Guidelines" located in a systematic grid pattern across the site with allowance for structural obstacles (e.g. existing buildings and trees);
 - Excavation of 7 testpits systematically located within the western portion of the site (AEC 4), using an excavator;
 - Collection of representative testpit samples of fill materials (i.e. 0.2 to 1.0 m bgs) and natural soils (i.e. 0.5 to 1.5 m bgs) at each of the testpit location and/or at changes in lithology or where visual and/or olfactory indicators of contamination were observed;
 - Completion of detailed environmental logging of each testpit for evidence of contamination (e.g. by reference to staining, odour, presence of materials of anthropogenic materials), fill materials and soil properties;
 - Drilling of 6 boreholes and collection of 2 soil samples (1 at surface and 1 at depth) from each borehole to assess for broad impacts from current and former site uses (AEC's 1, 3 and 4);
 - Installation of 2 groundwater wells to a maximum depth of approximately 7 metres below ground surface (m bgs), to bedrock refusal;
 - Collection of 1 surface sample from a depth no greater than 0.2 m using a shovel or trowel at 4 locations within 1 m of the external walls of Heathcote Hall and associated structures to assess for impacts as a result of the decay of lead based paint, asbestos and other potential hazardous building materials (AEC 1);
 - Collection of 1 surface sample from a depth no greater than 0.2 m using a shovel or trowel at 10 locations across the remainder of the site to assess for broad impacts from current and former site activities (AEC 1, 2, 3 and 4);

LG17100_01 DESI 04-01-18

- Submission of 7 testpit and 10 primary samples of fill materials and field quality control samples to a National Association of Testing Authorities (NATA) accredited laboratories for variable analysis for the following suite of analytes:
 - o Total Recoverable Hydrocarbons (TRHs);
 - o Benzene, Toluene, Ethylbenzene and Xylene (BTEX);
 - Polycyclic Aromatic Hydrocarbons (PAHs);
 - o Organochlorine Pesticides (OCPs);
 - o Organophosphate Pesticides (OPPs);
 - Polychlorinated Biphenyls (PCBs);
 - Heavy metals (arsenic, cadmium, copper, chromium, lead, nickel, mercury and zinc); and
 - Asbestos identification.
- Submission of 10 primary samples of natural soils and field quality control samples to NATA accredited laboratories for variable analysis for the following suite of analytes:
 - o TRHs;
 - o BTEX;
 - o PAHs; and
 - Heavy metals (arsenic, cadmium, copper, chromium, lead, nickel, mercury and zinc).
- Assessed the reliability of the field and laboratory procedures according to the requirements of NSW EPA (2017) *Guidelines for the NSW Site Auditor Scheme (3rd edition)*; and
- Prepared and submitted this DESI report including the following:
 - Desk study findings and findings of the subsurface investigation including, an outline of fieldwork undertaken, site conditions encountered, field observations, environmental testpit and bore logs.

LG17100_01 DESI 04-01-18

- A conceptual site model, data quality objectives, investigation methodologies and analytical laboratory results.
- A general evaluation of the feasibility of the proposed development based on the potential environmental constraints identified.
- Recommendations of the management options and/or remediation actions required to address the contamination impacts identified (if any).

LG17100_01 DESI 04-01-18

2. Site Description

2.1 Site Identification

The site is located in Heathcote, NSW, approximately 48 km southwest of the Sydney central business district (CBD). The site layout is presented in **Figure 2**. Details relating to the site are presented in **Table 1**.

Table 1 – Site Identification Details

Site Details	Description	
Address	1-21 Dillwynnia Grove, Heathcote, NSW, 2233	
Lot/DP	Lots 1 and 2 in DP 725184	
Local Government Area	Sutherland Shire Council	
Parish and County	Parish of Heathcote, County of Cumberland	
Site Area	Approximately 17,500 m ² (site survey 18/01/2017)	
Registered Owner	Fuzortinn Pty Ltd	
Zoning	Zone E4 Environmental Living	
Current Land Use	Vacant	
Proposed Land Use	Residential A and B (e.g. townhouses, apartment blocks, basement parking)	
Grid Coordinates	316920 m E, 6226367 m N	

2.2 Site Setting

The setting of the site including surrounding land use, topographical, geological and hydrogeological information for the locality is summarised in **Table 2**.

Table 2 – Site Setting Information

Category	Observation	
Surrounding Land Use	 North: Boronia Grove, followed by low density residential; South: Dillwynnia Grove, followed by low density residential and the Royal National park; West: Low density residential; and East: Tecoma Street, followed by low density residential and the Royal National Park. 	
Topography	The ground surface at the site slopes from northeast to southwest. The ground surface varies in elevations from approximately 209 m (Australian Height Datum) AHD in the vicinity of the south-western boundary of the site to approximately 217 m AHD in the vicinity of the north-eastern boundary of the site, respectively.	

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

	-		
Geology and Hydrogeology	Geological information obtained from the Sydney 1:100,000 Geological Series (Sheet 9130, Edition 1) indicates that the site is underlain by a subunit of the Hawkesbury Sandstone described as a claystone, siltstone and laminite. The remaining southern portion of the site is underlain by a sub-unit described as medium to coarse grained quartz sandstone, very minor shale and laminite lenses. Hydrogeological conditions at the site are likely to be defined by deeper aquifer systems. The deeper system is likely to be a semi-confined aquifer located within the rock fractures and defects within the Hawkesbury Sandstone bedrock. The deeper aquifer is thought to be located at a depth of >5 m bgs and would correspond to the regional system present at the site and local area.		
Fill Materials	 Fill depth range: 0.0 m to 1.5 m along site western portion and 0.0 m to 0.5 m along site eastern portion; and Fill description: Silty/sandy/gravelly CLAY, low to medium plasticity, brown, greyish brown, orange mottled, fine to medium sand, gravels, traces of rootlets, foreign materials including bricks and crushed concrete. 		
Natural Soils/Rocks	 Clay depth range: 0.5 m to 7.4 m along site western portion and 0.5 m to 12 m along site eastern portion; Clay description: Silty CLAY/Gravelly Silty CLAY, stiff to hard, medium to high plasticity, brown, red-brown, pale grey to white, orange mottled, fine to coarse angular to sub-angular, rounded to sub-rounded gravel, trace of fine to medium sand, traces of carbonaceous deposits; Rock depth range: +7.4 m along site western portion and +12 m along site eastern portion; and Rock description: SHALE, pale grey to dark grey, moderately to slightly weathered, very low to low strength. 		
Acid Sulfate Soils	A review of the acid sulfate soils (ASS) risk maps (1997) for Port Hacking conducted by LG indicated that the site is located in an area designated as "No Known Occurrence". Therefore, acid sulfate soils are not known or expected to occur in these areas. The ASS risk map defines that land management activities are not likely to be affected by acid sulfate soil materials.		
Registered Groundwater Bores	A review of groundwater bore records available on the NSW Office of Water (NOW) online database was undertaken by GHD (GHD, 2017). The search was limited to registered bores located within a radius of approximately 500 m of the site. The search did not identify the presence of registered bores within a radius of approximately 500 m of the site.		
Groundwater Depth Perched water, if present, is likely to exist within fill and/or natural s discontinuous pockets and be encountered at depths near the fill/nat and soil/rock interfaces. Regional groundwater is expected to exist w underlying formation depending on local fracturing and porosity.			
GroundwaterGroundwater is inferred to be flowing in a southerly direction (based of topography).			
NearestThe nearest surface water body is Heathcote Brook, a tributary of KangaSurface WaterCreek and the Hacking River, which flows west to east and is located approximately 500 m south of the site.			

LG17100_01 DESI 04-01-18

2.3 Site Condition

LG made the following observations during fieldworks conducted between 13 to 15 December 2017:

- The surface topography sloped down from northeast to southwest;
- The site comprised of a vacant block of land occupied with a main heritage listed building, trees and shrubs. Other structures across the site included sheds, stables and an outhouse;
- The north-eastern portion of the site was being used for the storage of construction materials including scaffolding equipment, concrete weights and timber;
- The south-eastern portion of the site was occupied by the Heathcote Hall (heritage listed building);
- The western portion of the site is covered with weeds, shrubs and trees;
- There was surface hardstand in the vicinity surrounding the Heathcote Hall. The remaining site surfaces comprised fill materials or natural soil and were generally overgrown with grasses and weeds;
- Two former ponds were located within the southern portion of the site. These had been emptied of water and sediment content;
- There was a stockpile of approximately 3 m³ located in the north central portion of the site containing sand and crushed demolition waste. No fragments of bonded fibreboard material were observed;
- There was a stockpile of approximately 20 m³ located in the eastern portion of the site containing sand and demolition waste including bricks, crushed concrete and tiles. No fragments of bonded fibreboard material were observed;
- There was a fill mound of approximately 5 m³ located in the north-western corner of the site containing sand, clay and crushed demolition waste. Also, fragments of bonded fibreboard material (potentially containing asbestos);
- There was a 100 mm diameter fragment of bonded fibreboard material (potentially containing asbestos) located within the south western portion of the site, adjacent to the outhouse;

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

- No signs of oil spill or stains were noted on the floor surfaces across the site;
- Some rubbish or domestic waste was observed across the site;
- There were no active pipelines; and
- There were no above ground tanks (ASTs) or visible evidence of underground storage tanks (USTs) or systems which should cause air emissions such as laboratories, incinerators, surface impoundment and land treatment areas.

LG17100_01 DESI 04-01-18

3. Previous Investigations

3.1 Summary of Previous Investigations

A summary of relevant previous investigation works that have been undertaken across the site is provided in **Table 3**.

Table 3 – Summary of Works Completed

Date	Report Objectives, Scope and Outcomes
GHD 2017 (27 October 2017) Phase 1 Contamination Assessment (Ref: 2316195)	 The objectives of the report were to: Provide indicative information as to the risk and nature of contamination at the site based on past and current land uses. Provide comments on the potential contamination risks at the site and the need for further investigation (if required). The scope of the report included: A review of published geological, soil landscape and acid sulfate soils; A review of site operational history including the following database searches; Review of the NSW Department of Primary Industries Water groundwater database for registered groundwater bores in the vicinity of the site; Review of readily available historical aerial photographs to identify previous land uses that may indicate potential contamination; Review of Section 149 Planning Certificates available for the site; Review of the NSW EPA Register for notices issued under the Contaminated Land Management Act 1997; and Review of WorkCover Dangerous Goods records. A site walkover by an experienced environmental scientist to identify site features and activities that may indicate the potential for contamination of the site from present or past land uses; and Provision of a PESI report detailing the findings of the assessment. The outcomes of the report were: Site history information indicated that the site and the surrounding area had been used predominately for residential purposes. Other activities had occurred on site including horse stabling, storage of construction materials (e.g. bricks, concrete, timber, etc.) and vehicle maintenance. Fill materials appeared to have been placed along the western and eastern portions of the site and had an unknown origin and quality. Based upon the findings of this investigation the following four potential areas of environmental concern (AEC) were identified (refer Figure 2): AEC 1: Potential weathering of hazardous building mat

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

Date	Report Objectives, Scope and Outcomes
	 demolition of former stable structures of unknown construction and storage of building materials; AEC 2: Maintenance of vehicles and storage of waste oils; AEC 3: Potential application of pesticides around buildings and former stables; and AEC 4: Importing fill of unknown quality, quantity and origin. Potential Asbestos Containing Material (ACM) fragments were identified in a small area within the south-western corner of the garden area (AEC 1); and Further investigation is recommended prior to redevelopment of the site to assess these potential linkages.

LG17100_01 DESI 04-01-18

4. Conceptual Site Model

A Conceptual Site Model (CSM) was developed in consideration of the background information, current site conditions and historical activities at the site. The CSM took into account the land use of low and high density residential buildings with 2 basement levels.

4.1 Potential Contamination Sources

Based on the review of the previous investigation conducted by GHD, the potential onsite contamination sources are considered to be as follows:

- AEC 1: Potential weathering of hazardous building materials, demolition of former stable structures of unknown construction and storage of building materials;
- AEC 2: Maintenance of vehicles and storage of waste oils;
- AEC 3: Potential application of pesticides around buildings and former stables; and
- AEC 4: Importation of fill of unknown quality, quantity and origin.

Buried hazardous materials include potential asbestos-containing materials (PACMs) such as bonded fibro fragments observed within the north-western and south-eastern portions of the site, respectively.

The AECs (areas of environmental concern) are shown on Figure 2.

4.2 Contaminants of Potential Concern

Based on the findings of available documents for previous investigations, the chemicals of potential concern (COPC) at the site are considered to be as follows:

 Soil - heavy metals (HMs), total recoverable hydrocarbons (TRHs), monocyclic aromatic hydrocarbon compounds benzene, toluene, ethyl-benzene and xylenes (BTEX), polycyclic aromatic hydrocarbons (PAHs), organochlorine and organophosphorous pesticides (OCPs/OPPs), polychlorinated biphenyls (PCBs) and asbestos.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

4.3 Exposure Pathway Evaluation

Exposure pathways that were considered relevant for this assessment are listed in **Table 4**.

Table 4 – Exposure Pathways

Contamination	Transport	Exposure Media	Potential	Likelihood of
Source	Mechanism		Receptors	Exposure
Impacted soils	Dermal contact during and post construction in accessible soil areas.	Ingestion and dermal contact, inhalation of asbestos fibres and volatile hydrocarbons (if present) during site redevelopment and/or future site use by occupants	Outdoor workers/ maintenance workers and future site occupants.	Unlikely if remedial action or onsite management to prevent exposure is undertaken.

4.4 Data Gaps

On the basis of the qualitative data available for the site, including site history review and preliminary site investigation (GHD, 2017), it was considered necessary to satisfactorily characterise potential contamination resulting from:

- Importation of fill materials to the site from of unknown source and origin;
- Potential spills and leaks from vehicular maintenance and storage of waste oils;
- Weathering of building surfaces (i.e. painted surfaces, metallic structures, cementfibre building materials) on the site;
- Buried hazardous materials, including potential asbestos containing materials (PACMs) encasing utilities; and
- Possible use of organochlorine pesticides for termite and pest control.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

5. Data Quality Objectives

In accordance with the DEC 2017 Guidelines for the NSW Site Auditor Scheme the process of developing Data Quality Objectives (DQO) was used by LG to determine the appropriate level of data quality needed for the specific data requirements of the project. The DQO process was applied to define the type, quantity and quality of data needed to support decisions for the assessment of the site, as outlined in **Table 5**.

Table 5 – Data Quality Objectives

Step	Objectives
State the Problem (Step 1)	For redevelopment purposes the site needs to be made suitable for ongoing residential land uses. The detailed investigations were therefore required to assess risks posed by contaminated soils to potential onsite and offsite receptors, in accordance with NSW EPA guidelines.
Identify the Decisions (Step 2)	 The presence of asbestos contamination identified indicated that the site has been subject to potential contamination associated with past activities, including potential imported fill material, stockpiled soils and hardstand. To assess the environmental condition of the site for the proposed ongoing residential land uses, LG would make the required decisions based on the following questions: Is site soil and groundwater quality suitable for the intended land use? Are there any buried contaminant sources (or building materials) still present on the site? Do site soils or groundwater require further remediation or treatment and special management before the site can be used for the intended purposes, or to prevent offsite migration of contaminants?
Identify Inputs to the Decision (Step 3)	 The primary inputs to the assessment of soil and groundwater were as follows: Results from previous investigation (GHD, 2017); Implementation of a sampling, analytical and quality plan; Observations made during the sampling program, which may influence the need for further assessment; Assessment of the suitability of the data obtained from sampling and analysis against data quality indicators (DQIs); Assessment of analytical results against relevant criteria. These would comprise elevant soil investigation levels (SILs), to determine the requirement for site remediation and validation.
Define the Study Boundaries (Step 4)	 The spatial boundaries of the assessment were limited as follows: Lateral - the geographical boundary of the assessment was defined by the site boundary, as illustrated in Figure 1; Vertical - from the existing ground level to the proposed depth of the investigation (approximately 0.5 m into natural soil or COTYLED.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

Step	Objectives
	 refusal for testpits and 0.2 m to 1.5 m for soil bores); and Temporal - the findings of this assessment would provide and additional snapshots of the site contamination status and can be compared to the previous investigations to provide further evidence that the site can be made suitable for ongoing residential land use. The results of the investigation would apply to the site on the days of sampling, site activities postdating the investigation may invalidate the investigation results (or words to this effect).
Develop a Decision Rule (Step 5)	 Laboratory test results would be accepted if: All contracted laboratories are accredited by NATA for the analyses undertaken; All laboratory analytical data is generally within pre-determined data acceptance criteria, in accordance with laboratory quality assurance and quality control (QA/QC) policies and DQOs; QA/QC results demonstrate acceptable reliability and representativeness of the data set; and Laboratory practical quantitation limits (PQL) are below the adopted acceptance/assessment criteria for the tested contaminants, wherever possible. If soil contamination was identified, further assessment may be required. Depending on the results of the assessment, a remediation action plan may be required to render the site suitable for the proposed ongoing residential land use.
Specify Limits of Decision Errors (Step 6)	 Specific limits for this project are in accordance with the appropriate guidance made or endorsed by the NSW EPA, appropriate indicators of data quality and standard procedures for field sampling and handling. This step also examines the certainty of conclusive statements based on the available site data collected. This should include the following points to quantify tolerable limits: A decision can be made based on a probability that 95% of the data, which is collected using a systematic sampling pattern, will satisfy the given site criteria. This follows the guidance given in NSW EPA (1994) for site validation contingent upon the upper 95% confidence limit (95% UCL) on the average site concentrations for each respective contaminant being below the relevant criteria. Therefore, a limit on the decision error would be 5% that a conclusive statement may be incorrect. A decision can be made based on the probability that a contami nation hotspot of a certain circular diameter would be detected with 95% confidence using a selected density of systematic data points. The decision error would limited to a probability of 5% that a contamination hotspot may not be detected.
Optimise the Design for Obtaining Data (Step 7)	 This step was intended to define the data collection design, which would generate data to efficiently and effectively satisfy the DQOs. Sampling procedures to be implemented to optimise data collection for achieving the DQOs included the following: Soil sampling from a systematic or triangular sampling grid.

LG17100_01 DESI 04-01-18

Step	Objectives	
	 Stratified sampling from selected depth intervals to characterise fill soils, separately to natural soils. 	

To ensure that the investigation data collected is of an acceptable quality the investigation data set was to be assessed against data quality indicators (DQI), which related to both field and laboratory-based procedures.

The pre-determined DQIs established for the project are discussed below in relation to the following PARCC parameters, and are shown in **Table 6**.

- Precision measured the reproducibility of measurements under a given set of conditions. The precision of the laboratory data and sampling techniques was assessed by calculating the Relative Percent Difference (RPD) of duplicate samples.
- Accuracy measured the bias in a measurement system. The accuracy of the laboratory data that was generated during this study was a measure of the closeness of the analytical results obtained by a method to the 'true' value. Accuracy was assessed by reference to the analytical results of laboratory control samples, laboratory spikes and analyses against reference standards.
- Representativeness expressed the degree which sample data accurately and precisely represented a characteristic of a population or an environmental condition. Representativeness was achieved by collecting samples on a representative basis across the site, and by using an adequate number of sample locations to characterise the site to the required accuracy.
- Comparability expressed the confidence with which one data set can be compared with another. This was achieved through maintaining a level of consistency in techniques used to collect samples; and ensuring analysing laboratories used consistent analysis techniques; and reporting methods.
- Completeness was defined as the percentage of measurements made which were judged to be valid measurements. The completeness goal was set at there being sufficient valid data generated during the study.
- Sensitivity expressed the appropriateness of the chosen laboratory methods, including the limits of reporting, in producing reliable data in relation to the adopted site assessment criteria.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

Table 6 – Summary of Data Quality Indicators

Data Quality Indicator	Frequency	Data Quality Criteria	
Precision			
Split duplicates (intra laboratory)	1 / 20 samples	<50% RPD or agreement between asbestos	
Blind duplicates (inter laboratory)	1 / 20 samples		
Laboratory Duplicates	1 / 20 samples	presence/absence above the detection limit ¹	
Accuracy			
Surrogate Spikes	All organic analysis samples	70-130 % chemical analysis only	
Laboratory Control Samples	1 per lab batch	70-130 % chemical analysis only	
Matrix Spikes	1 per lab batch	70-130 % chemical analysis only	
Representativeness		·	
Sampling appropriate for media and analytes	All samples	-	
Samples extracted and analysed within holding times	All samples	Soil: organics - 14 days, Inorganics -6 months, asbestos N/A	
Laboratory blanks	1 per laboratory batch	<lor analysis="" chemical="" only<="" td=""></lor>	
Trip Spikes	1 per sampling event with volatile analytes	70-130 % recovery for BTEX compounds	
Storage blanks	1 per sampling event with volatile analytes	< LOR BTEX	
Rinsate	1 per sampling event with chemical COPCs	< LOR chemical analysis only	
Comparability	·	·	
Standard operating procedures for sample collection and handling	All samples	All samples ²	
Standard analytical methods used for all analytes	All samples	All samples ²	
Consistent field condition, sampling staff and laboratory analysis	All samples	All samples ²	
Limits of reporting appropriate and consistent	All samples	All samples ²	
Completeness			
Sample description, field quantification and COCs completed and appropriate	All samples	All samples ²	

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

Data Quality Indicator	Frequency	Data Quality Criteria
Satisfactory frequency and results for all QC samples	All QC samples	95 %
Data from critical samples considered valid	All samples	Critical samples valid ²
Clear indication of how well the sampling programme complied with the SAQP	All samples	Critical samples valid ²
Sensitivity		
Analytical methods and limits of recovery appropriate for media and adopted site assessment criteria	All samples	LOR <= site assessment criteria

Notes:

- 1. If the RPD between duplicates was greater than the pre-determined data quality indicator, a judgment was made as to whether the excess was critical in relation to the validation of the data set or unacceptable sampling error was occurring in the field.
- 2. Qualitative assessment of compliance with standard procedures and appropriate sample collection methods was completed during the DQI compliance assessment.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

6. Sampling and Analysis Methodology

6.1 Scope of Works

The overall scope of works for the contamination investigation was as follows:

- Preparation of a health safety and environment plan;
- Review of previous data and reports described in Section 3.1;
- Field investigations, involving:
 - Soil sampling from 7 testpit locations across the western portion of site (AEC 4) to a maximum depth within underlying natural soil layers, as shown in Figure 2;
 - Soil sampling from 20 soil bore locations across the site (AEC 1, 2, 3 and 4), as shown in **Figure 3**;
 - Logging of soil conditions and conduct field VOC screening using a portable photo-ionisation detector (PID);
 - Installation of 2 groundwater monitoring wells (BH08 and BH09, as shown in Figure 3;
 - Laboratory analysis of soil samples for the identified chemicals of concern including asbestos; and
 - Preparation of a site contamination report, with recommendations for remedial action, if warranted.

6.1.1 Sampling Rationale

The soil investigations were conducted by testpit excavations and soil bores using a combination of targeted and systematic sampling patterns to address the identified data gaps, as follows:

Given that the site covers an area of approximately 17,500 m² (1.75 ha), a total of 27 soil sampling locations were proposed in accordance with the Minimum Sampling Points Required for Site Characterisation, published under the NSW EPA (1995) Sampling Design Guidelines located in a systematic grid pattern across the site;

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

- Excavation of 7 testpits systematically located within the western portion of the site (AEC 4), using an excavator to a minimum of 0.5 m into natural soils or refusal into bedrock;
- Collection of representative testpit samples of fill materials (i.e. 0.2 to 1.0 m bgs) and natural soils (i.e. 0.5 to 1.5 m bgs) at each of the testpit location and/or at changes in lithology or where visual and/or olfactory indicators of contamination were observed;
- Completion of detailed environmental logging of each testpit for evidence of contamination (e.g. by reference to staining, odour, presence of materials of anthropogenic materials), fill materials and soil properties;
- Drilling of 6 boreholes and collection of 2 soil samples (1 at surface and 1 at depth) from each borehole to assess for broad impacts from current and former site uses (AEC's 1, 3 and 4);
- Installation of 2 groundwater wells to a maximum depth of approximately 7 m bgs, to bedrock refusal;
- Collection of 1 surface sample from a depth no greater than 0.2 m using a shovel or trowel at 4 locations within 1 m of the external walls of Heathcote Hall and associated structures to assess for impacts as a result of the decay of lead based paint, asbestos and other potential hazardous building materials (AEC 1);
- Collection of 1 surface sample from a depth no greater than 0.2 m using a shovel or trowel at 10 locations across the remainder of the site to assess for broad impacts from current and former site activities (AEC 1, 2, 3 and 4); and
- The systematic (grid-based) sampling locations have been selected to target the AEC (areas of environmental concern) identified, with laboratory analyses on representative soil samples for potential contaminants including:
 - Broad coverage for heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc); total recoverable hydrocarbons (TRHs); monocyclic aromatic hydrocarbons - benzene, toluene, ethyl-benzene and xylenes (BTEX); polycyclic aromatic hydrocarbons (PAHs); organochlorine pesticides (OCPs); organophosphate pesticides (OPPs); polychlorinated biphenyls (PCBs).
 - Potential asbestos-containing materials (PACM) in impacted fill soils across the site.

LG17100_01 DESI 04-01-18

6.1.2 Soil Investigation Methodology

- Subsurface investigations and soil sampling were conducted via use of an excavator, soil bore and drilling equipment. Excavator equipment was the preferred method to visually assess the fill extent within the western portion of the site, allowing collection of representative soil samples from the filling layer, the fill/clay interface and the natural (residual) clay, which underlies the fill layer.
- Subsurface conditions were logged by personnel qualified and experienced in dealing with contaminated sites.
- Testpit soil samples were generally collected at the following depths:
 - Two soil samples within the fill layer, one sample at 0.0-0.2 m, and deeper fill samples at 0.3–0.5 m bgl (subject to the thickness of the fill layer at each sampling location);
 - One soil sample at, or close to the fill-clay interface (estimated depth 0.50 0.1 m bgl);
 - One soil sample to characterise the residual clay layer; and
 - Additional soil samples to be collected where changes in lithology, evidence of contamination or elevated PID readings are noted.
- Sampling from soil bores was conducted using mechanical and hand drilling equipment at discrete locations across the site to collect samples at the surface and then at deeper intervals (depending on location).
- Soil samples were qualitatively screened in the field for VOC content using a portable photo-ionisation detector (PID). Sampling locations were measured with reference to existing site features and located with a hand-held GPS.

6.2 Laboratory Analysis

6.2.1 Soil Analyses

Based on the PID results and field observations, selected soil and samples were analysed in the laboratory for environmental purposes. Laboratory testing comprised analysis of 27 primary soil samples (assuming 1 sample per location where fill/suspected contamination identified).

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

It should be noted that multiple samples were collected from each sampling location. However, representative residual samples were only tested in selected locations to provide an indication of natural soil conditions.

Untested residual samples were held by the laboratory, and tested at a later stage if warranted (i.e. for vertical delineation purposes in the case that shallow fill is found to be contaminated).

Submission of 17 fill material samples to a National Association of Testing Authorities (NATA) accredited laboratory for variable analysis for the following suite of analytes:

- TRHs;
- BTEX;
- PAHs;
- OCPs;
- OPPs;
- PCBs;
- Heavy metals (arsenic, cadmium, copper, chromium, lead, nickel, mercury and zinc); and
- Asbestos identification.

Submission of 10 fill material samples to a NATA accredited laboratory for variable analysis for the following suite of analytes:

- TRHs;
- BTEX;
- PAHs; and
- Heavy metals (arsenic, cadmium, copper, chromium, lead, nickel, mercury and zinc).

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

7. Assessment Criteria

7.1 Soil Assessment Guidelines

The soil investigations works were undertaken with consideration to aspects of the following guidelines, as relevant:

- NEPM (2013) Schedule B(1) Guideline on Investigation Levels for Soil and Groundwater, National Environment Protection (Assessment of Site Contamination) Measure 1999 – Amendment 2013, National Environment Protection Council (NEPC), May 2013;
- NSW DEC (2007) Guidelines for the Assessment and Management of Groundwater Contamination;
- NSW DECC (2009) *Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act 1997*; and
- NSW EPA (2017) Guidelines for the NSW Site Auditor Scheme (3rd Edition);

Application of these guidelines to this DESI is briefly described below.

7.2 Soil Assessment Criteria

The guidelines to evaluate soil analytical results currently applied in NSW, as listed above, presents a range of Health-Based Soil Investigation Levels (HILs), Provisional Phytotoxicity-Based Investigation Levels (PILs), Ecological Investigation Levels (EILs), sensitive land use thresholds and expected background concentration ranges for urban redevelopment sites in NSW. Application of these guidelines are briefly described below.

HILs

The HILs described by NEPC (2013) guidelines are based on the *Australian exposure factor guidance* (enHealth 2012). HILs are scientifically based, generic assessment criteria designed to be used in the first stage (Tier 1 or 'screening') of an assessment of potential risks to human health from chronic exposure to contaminants. They are intentionally conservative and are based on a reasonable worst-case scenario for four generic land use settings:

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

- HIL A residential with garden/accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry), also includes children's day care centres, preschools and primary schools;
- HIL B residential with minimal opportunities for soil access includes dwellings with fully and permanently paved yard space such as high-rise buildings and flats;
- HIL C public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and footpaths. It does not include undeveloped public open space (such as urban bushland and reserves) which should be subject to a sitespecific assessment where appropriate; and
- HIL D commercial/industrial such as shops, offices, factories and industrial sites.

SILs specifically for the lower volatility aliphatic and aromatic petroleum hydrocarbon components are also provided in NEPC (2013) for the various land use scenarios described above.

The NSW EPA endorsed contaminated site assessment process also stipulates that the impact of contaminants on ground and surface water, potential degradation of building structures and affects of chemical mixtures need to be considered.

PILs & EILs

The PILs (NSW DEC, 2006) and EILs (NEPC, 2013) have been devised for the protection of plant health, and are designed to be applied as single number criteria indicative of environmental effect. The PILs have been developed for application to sandy loam soils with a pH of 6 to 8. As such, their use has significant limitations since phytotoxicity depends on soil and species parameters in ways that are not fully understood and they are intended for use as a screening guide only. The NSW EPA decision process for assessing urban redevelopment sites stipulates that the PILs need to be considered on sites used for either residential purposes, or land uses including parks, recreational open space and secondary schools. PILs are not required to be adopted on land used for commercial/industrial purposes.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

7.2.1 Adopted Soil Assessment Criteria

Given that the site will continue to be used for residential purposes, and in accordance with the decision process for assessment of urban redevelopment sites (EPA 2017), concentrations of contaminants in soils across the site were compared against the published investigation levels sourced from the following:

- NEPM (2013) Health-based Investigation Levels for Residential (HIL-A and B);
- NEPM (2013) Health-based Screening Levels (HSLs) for soil vapour intrusion in sandy soils for Residential (HSL-A and B); and
- NEPM (2013) Ecological Screening/Investigation Levels for Residential (ESL/EIL).

7.3 Aesthetic Criteria

Consistent with NSW EPA (2017), aesthetic issues were required to be considered for residential land use scenarios. Also, the 2013 NEPM 'Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater' advises that:

'There are no numeric Aesthetic Guidelines but the fundamental principle is that the soils should not be discoloured, malodorous (including when dug over or wet) nor of abnormal consistency. The natural state of the soil should be considered.'

Discoloured soils are not considered by the NSW EPA as a quality of the environment that needs to be protected on a residential site. Given these NEPM and NSW EPA requirements, the aesthetic criteria of relevance to the site in its present condition are considered to be:

- No malodorous materials exposed at ground surface;
- No malodorous gases emanating from the ground; and
- No floating product to remain on groundwater at the site.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

7.4 Structural Guidelines

The 2013 NEPM 'Schedule B(1) Guideline on the Investigation Levels for Soil and Groundwater' advises that:

'For some substances such as phenol and sulphates, their impact on structures (effect on PVC piping and cement, respectively) may override the health and environmental considerations. Guidelines for protection of structures in the built environment should be set for a small number of contaminants where there is a concern. A structural guideline of 2000 mg/kg is set for sulphate in soil'

The available information indicates there should be a low risk of significant structural issues for the site as a result of possible contaminants in the ground which could cause corrosion, erosion or destruction of structures.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

8. Quality Assurance and Quality Control (QA/QC)

8.1 Data Validation

The QA/QC program implemented for this DESI was generated as the outcome of the seven-step DQO process, as described in **Section 5**.

The achievement of the project DQOs was demonstrated by reference to the Data Quality Indicators (DQIs), precision, accuracy, representativeness, completeness and comparability. Details of the QA/QC data validation are presented in **Appendix B**.

8.2 Data Useability

The data validation procedure employed in the assessment of the field and laboratory QA/QC data indicated that the reported field and analytical results are representative of the conditions at the sample locations and that the analytical data can be relied upon for the purpose of this assessment. It is concluded that overall the quality of the field and analytical data produced is reliable for the purpose of this soil validation report.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

9. Results

The results of the fieldworks and laboratory analysis undertaken for this DESI are detailed in **Sections 9.1** to **9.2** below.

9.1 Field Results

9.1.1 Sub-Surface Observation and Condition

The sub-surface conditions encountered at the targeted areas investigated generally comprised of fill materials with sand, gravel and clay underlain by natural clay. A summary of the sub-surface conditions encountered at the site is provided in **Table 7**.

Table	7 -	- Generalise	ed Stratigraphy
-------	-----	--------------	-----------------

Sub-surface Conditions		Depth
Geological Unit	Description	(Top of Unit m bgs)
Fill	Fill ; Sand, gravel and clay with some traces of demolition fragments, light grey, poorly graded, loose, dry.	0.0 – 1.0 m
Clay	Clay ; orange-yellow-brown, non-plastic to low plasticity, firm to stiff, hard, moist.	0.5 – 1.5 m

9.1.2 VOC Screening

Samples of fill materials and natural soils were screened for the presence of VOCs in the field using a calibrated photoionisation detector (PID).

Concentrations of VOCs ranged from 0 ppm to 26.3 ppm within fill materials with sample TP3 at 0.2-0.3 m bgs measuring the highest reading. PID readings in natural soils were all 0.0 ppm. These results are consistent with the analytical results in which concentrations of volatile hydrocarbons were generally less than the laboratory EQLs. It is noted that the highest concentrations of petroleum hydrocarbons (i.e. TRH compounds) were reported at TP3 at 0.2-0.3 m bgs.

9.2 Analytical Results

9.2.1 Soil Analytical Results

A total of 7 testpit samples and 20 soil bore samples (including 2 duplicates and 1 triplicate sample) collected on 13, 14 and 15 December 2017 from across the site were submitted for laboratory analysis. Testpit and soil bore sampling locations are shown in **Figure 3** and analytical results are summarised in **Table A** attached.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

In addition, a total of 2 bonded fibro cement fragments (PACM1 and PACM2) collected from surfaces across the site were analysed for asbestos identification.

Chain of Custody (COC) documentation and certified laboratory reports are included in **Appendix C**.

Laboratory results indicated that:

- Concentrations of petroleum hydrocarbons (as TRH and BTEX compounds) were either below the laboratory Estimated Quantitation Limit (EQL), EILs or HILs criteria in all samples collected, with the exception of the following:
 - Concentrations of TRH C16-C34 less BTEX (F3) were above the EIL in sample TP3/0.2-0.3.
- Concentrations of total PAHs, benzo(a)pyrene, OCPs, OPPs, PCBs and metals (arsenic, cadmium, copper, chromium, lead, nickel, mercury and zinc) were either below the laboratory EQL, EILs or HILs criteria in all samples collected, with the exception of the following:
 - Concentrations of chromium were above the HIL A in samples S9 and SH3.
 - Concentrations of lead were above the HIL A in samples S10 and SH3.
- Asbestos fibres (amosite and chrysotile) were detected above the HIL A in sample TP5/0.2-0.3, collected within the fill material at Testpit 5; and
- Asbestos containing materials (ACMs) were identified in the following bonded cement fragments:
 - Amosite and chrysotile asbestos was detected in sample PACM1, collected within the fill material at Testpit.
 - Amosite, chrysotile and crocidolite asbestos was detected in sample PACM2, collected from surface at south eastern portion of the site.
 - The above samples can be referred as ACMs.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

10. Conclusions and Recommendations

10.1 Conclusions

Based on the findings of this DESI the following conclusions are provided:

- The surface fill materials comprised sand, gravel and clay with traces of demolition fragments, at the locations investigated. This fill was underlain by natural clay;
- The soils at the locations sampled and analysed did not contain concentrations of TRHs, BTEX, PAHs, OCPs, OPPs, PCBs and heavy metals that were greater than the Residential A and B land use criteria, at the time tested, with the following exceptions;
 - Concentrations of TRH C16-C34 less BTEX (F3) were above the EIL in sample TP3/0.2-0.3. However, further statistical assessment indicated that the isolated occurrence of elevated TRH impact at TP3/0.2-0.3 is not considered significant at the site (refer **Table C**).
 - Concentrations of chromium were above the HIL A in samples S9 and SH3 and lead concentrations were above the HIL A in samples S10 and SH3. However, it is considered that residential HILs at the site have limited application due to significant sealing expected on site surfaces and landscaping areas. Also, consideration for remediation drivers would not be required where there is no associated human health risk.
 - It is further noted that the vast majority of these soils will be removed during the proposed basement excavation and risks to site occupants and vegetation will be further reduced. Therefore, LG considers that the TRH, chromium and lead impact identified will not adversely affect the suitability of the site for the proposed use.
- Asbestos fibres (amosite and chrysotile) were detected above the HIL A in sample TP5/0.2-0.3, collected within the fill material at Testpit 5;
- Bonded cement fragments collected from surfaces across the site for laboratory verification analysis confirmed the presence of asbestos containing materials in samples PACM1 and PACM2, which can be referred as ACMs; and

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

 The assessment results indicate that the site subject to this DESI can be made suitable for Residential A and B land use, consistent with a Zone E4 Environmental Living zoning, provided that soils contaminated with asbestos are removed and disposed off-site appropriately.

10.2 Recommendations

Based on the conclusions above the following recommendations are provided:

 Remediation and validation works be undertaken, in order to safely remove Asbestos Hotspot TP5/0.2-0.3 and bonded ACMs identified to demonstrate that the remaining excavations and excavated soils meet NSW EPA requirements for Residential A and B land use.

These conclusions and recommendations are made within the limitations of the work, which has been undertaken. A statement of these limitations is included after **Section 11** of this report.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

11. References

ASTM Standard Practice D2488-90 *Description and Identification of Soils (Visual-Manual Procedure)*. American Society for Testing and Materials.

AS1726-1993. Geotechnical site investigations Australian Standard.

GHD, 2017. *Phase 1 Contamination Assessment, Heathcote Hall Services*. Dated 27 October 2017. Prepared for Fuzortinn Pty Ltd. Ref: 2316195.

NEPC, 2013. National Environment Protection (Assessment of Site Contamination) Measure (NEPM) – Schedule B. National Environment Protection Council.

NSW DEC, 2007. *Guidelines for the Assessment and Management of Groundwater Contamination*. NSW Department of Environment and Conservation.

NSW DECC, 2009. *Guidelines on the Duty to Report Contamination under the Contaminated Land Management Act.* NSW Department of Environment and Climate Change.

NSW DECCW, 2009. *Guidelines for Implementing the Protection of the Environment Operations (Underground Petroleum Storage Systems) Regulation 2008.* NSW Department of Environment, Climate Change and Water.

NSW EPA, 1995. *Contaminated Sites: Sampling Design Guidelines.* NSW Environment Protection Authority.

NSW EPA, 2017. *Guidelines for the NSW Site Auditor Scheme (3rd edition).* NSW Environmental Protection Authority.

NSW OEH, 2011. *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites*. NSW Office of Environment and Heritage.

PUSBR 5005-86. *Procedure for Determining Unified Soil Classification (Visual Method)*, United States Department of the Interior, Bureau of Reclamation

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

Limitation Statement

This DESI report has been prepared for the sole purpose of providing further assessment of the condition of soils at the site in accordance with generally accepted consulting practice. No other warranty or guarantee, expressed or implied is made as to the advice indicated in this report.

This report should not be used for any other purpose without our prior written consent. Accordingly, neither LG nor any member or employee of LG accepts responsibility or liability in any way whatsoever for the use of this report for any purpose other than that for which it has been prepared.

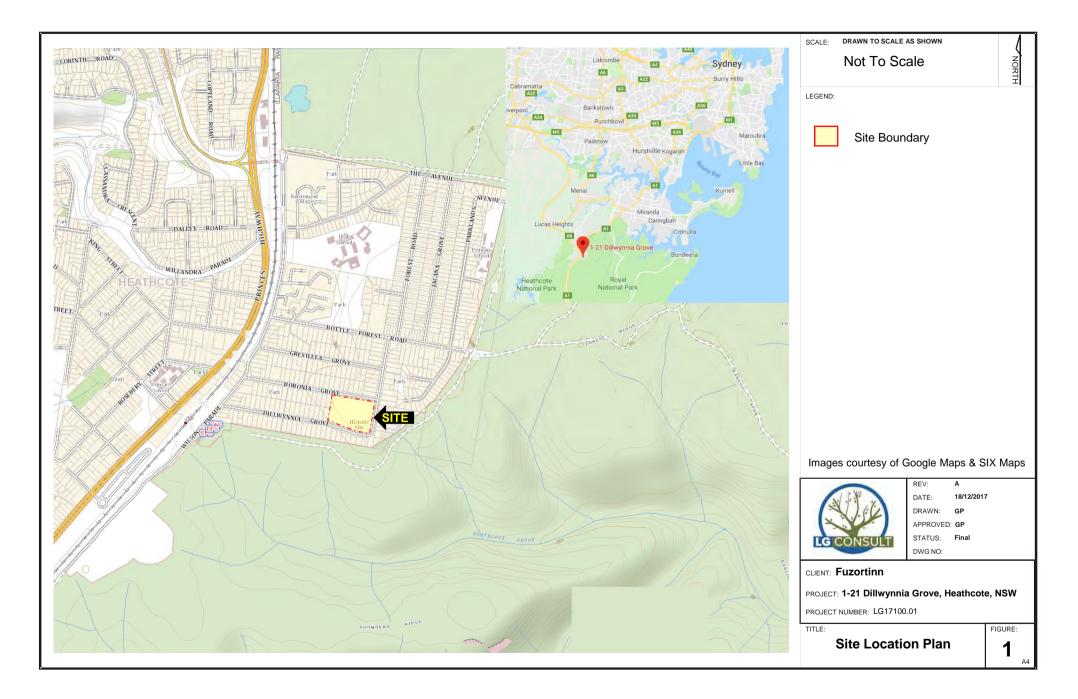
This report should not be released to any other party, in whole or in part, without the express written consent of LG. LG accepts no liability or responsibility whatsoever for or in respect of any use or reliance upon this report by any third party.

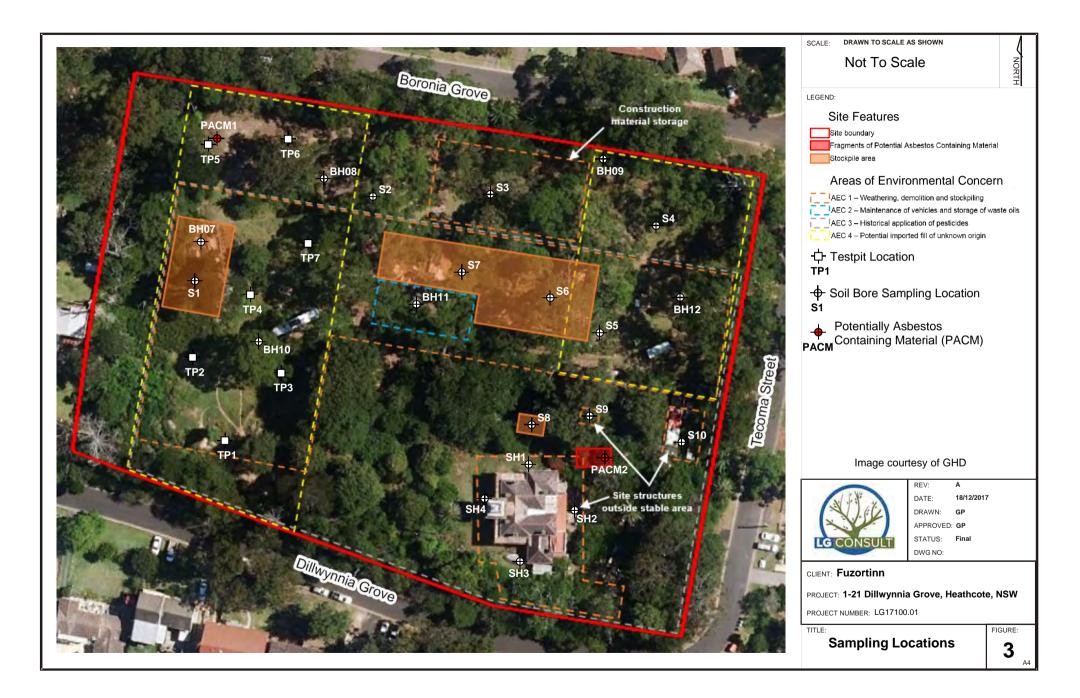
LG has relied upon and presumed accurate information provided by Fuzortinn Pty Ltd and/or any third party (or absence thereof) in making the assumptions made in this report. Nothing in this report should be taken to imply that LG has verified or audited any of the information supplied to us other than as expressly stated in this report. We have assumed this information to be both adequate and accurate for the purposes of this report.

Where findings, observations and conclusions are based solely upon information provided by Fuzortinn Pty Ltd and/or a third party and LG do not accept, to the maximum extent permitted by law, any liability for any losses, claims, costs, expenses, damages (whether in statute, in contract or tort for negligence or otherwise) suffered or incurred by Fuzortinn Pty Ltd or any third party as a result of or in connection with LG's reliance on any such the information to the extent that such information is false, misleading or incomplete and LG gives no warranty or guarantee, express or implied as to such findings, observations and conclusions.

If further information becomes available, or additional assumptions need to be made, LG reserves its right to amend any statements or opinions made in this report.

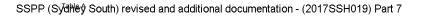
LAND & GROUNDWATER CONSULTING PTY LTD


LG17100_01 DESI 04-01-18


Figures

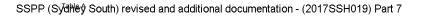
LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

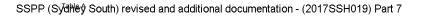

Tables

LAND & GROUNDWATER CONSULTING PTY LTD

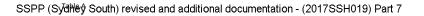
LG17100_01 DESI 04-01-18

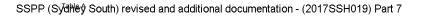


ample ID epth (m)							SE173782.001 TP1/0.5-1.0 0.5-1.0	SE173782.002 TP2/0.3-1.0 0.3 - 1.0	SE173782.003 TP3/0.2-0.3 0.2 - 0.3	SE173782.004 TP4/0.2-0.3 0.2 - 0.3	SE173782.005 TP5/0.2-0.3 0.2 - 0.3	SE173782.00 TP6/0.2-0.3 0.2 - 0.3
oil Type							0.5-1.0 Fill: Clay & Sand	0.3 - 1.0 Fill: Clay & Sand	0.2 - 0.3 Fill: Clay & Sand	0.2 - 0.3 Fill: Ash & Sand	0.2 - 0.3 Fill: Sand & Clay	0.2 - 0.3 Fill: Clay
ate Sampled							13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
				NEPN	A 2013							
ompounds	Unit	EQL	Residential HIL A ¹	Residential HIL B ³	Recreational HIL C ³	Urban Residential and Public Open Space - EIL ⁴						
RHs RH C6-C9	mg/kg	20	-		-	-	<20	<20	<20	<20	<20	<20
RH C6-C10 PH C6-C10 less BTEX (F1)	mg/kg mg/kg	25 25	- 45 ²	- 45 ²	-	- 180	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
RH C10-C14 RH C15-C28	ma/ka ma/ka	20 45	-		-	-	<20 <45	<20 <45	<20 290	<20 <45	<20 <45	<20 <45
RH C29-C36 RH C37-C40	mg/kg mg/kg	45 100	-		-	-	<45 <100	<45 <100	280 <100	63 <100	<45 <100	<45 <100
RH >C10-C16 RH >C10-C16 less Naphthalene (F2)	mg/kg mg/kg	25 25	- 110 ²	- 110 ²		- 120	<25 <25	<25 <25	68 68	<25 <25	<25 <25	<25 <25
RH >C16-C34 (F3) RH >C34-C40 (F4)	mg/kg mg/kg	90 120			-	300 2800	<90 <120	<90 <120	450 <120	<90 <120	<90 <120	<90 <120
RH >C10-C36	ma/ka ma/ka	110 210	-	-	-	-	<110 <210	<110 <210	570 520	<110 <210	<110 <210	<110 <210
TEX		0.1	0.5 ²	o 5 ²		50	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
nzene hylbenzene	mg/kg mg/kg	0.1	55 ²	0.5 ² 55 ²	-	70	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
luene lene (m & p)	mg/kg mg/kg	0.1	160 ²	160 ²	-	- 85	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1	<0.1	<0.1
lene (o) lene Total	mg/kg mg/kg	0.1	40 ²	- 40 ²	-	- 105	<0.1 <0.3	<0.1 <0.3	<0.1 <0.3	<0.1 <0.3	<0.1 <0.3	<0.1 <0.3
AHs aphthalene	mg/kg	0.1	3 ²	2 ²	-	170	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
methylnaphthalene	mg/kg	0.1	-	3 ²	-	-	<0.1	<0.1	<0.1	0.2	<0.1	<0.1
methylnaphthalene ienaphthylene	mg/kg mg/kg	0.1					<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1
enaphthene Jorene	mg/kg mg/kg	0.1	-		-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
enanthrene thracene	mg/kg mg/kg	0.1	-			-	<0.1	<0.1	<0.1	0.1	<0.1	<0.1
Joranthene	mg/kg mg/kg	0.1	-		-	-	<0.1	0.1	<0.1	<0.1	<0.1	<0.1
enzo(a)anthracene	ma/ka ma/ka	0.1			-	-	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1
enzo(b&j)fluoranthene enzo(k)fluoranthene	mg/kg mg/kg	0.1	-		-	-	< <u>0.1</u> <0.1	0.1 <0.1	0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1
enzo(a)pyrene deno(1,2,3-cd)pyrene	mg/kg mg/kg	0.1	-		-	0.7	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1
benzo(a&h)anthracene enzo(ghi)perylene	mq/kq mq/kq	0.1	-			-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
arcinogenic PAHs (as BaP TEQ)-assume results <lor=0 arcinogenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""><td>TEQ TEQ (ma/ka)</td><td>0.2</td><td>3 3</td><td><u>4</u> 4</td><td>3</td><td>-</td><td><0.2 <0.3</td><td><0.2 <0.3</td><td><0.2 <0.3</td><td><0.2 <0.3</td><td><0.2 <0.3</td><td><0.2 <0.3</td></lor=lor<></lor=0 	TEQ TEQ (ma/ka)	0.2	3 3	<u>4</u> 4	3	-	<0.2 <0.3	<0.2 <0.3	<0.2 <0.3	<0.2 <0.3	<0.2 <0.3	<0.2 <0.3
arcinogenic PAHs (as BaP TEQ)-assume results <lor=lor 2<="" td=""><td>TEQ (mg/kg) ma/ka</td><td>0.2</td><td>3 300</td><td>4 400</td><td>3 300</td><td>-</td><td><0.2 <0.8</td><td><0.2 <0.8</td><td><0.2 <0.8</td><td><0.2 <0.8</td><td><0.2 <0.8</td><td><0.2 <0.8</td></lor=lor>	TEQ (mg/kg) ma/ka	0.2	3 300	4 400	3 300	-	<0.2 <0.8	<0.2 <0.8	<0.2 <0.8	<0.2 <0.8	<0.2 <0.8	<0.2 <0.8
CPs		0.1				-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
axachlorobenzene (HCB) Idane	mg/kg mg/kg	0.1	<u> </u>	<u>15</u> -	10 -		<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
aptachlor drin	mg/kg mg/kg	0.1	6	<u>10</u> 10	<u>10</u> 10		<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1
eldrin oha BHC	mq/kq mq/kq	0.1	-	-	-	-	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1
eta BHC Ilta BHC	mg/kg mg/kg	0.1	-		-		<u><0.1</u> <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
aptachlor epoxide oha Endosulfan	mq/kq mq/kq	0.1	-		-		<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2
adosulfan Idosulfan sulphate	mg/kg mg/kg	0.1	270	400	340	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1
amma Chlordane	ma/ka ma/ka	0.1	50	90	70	-	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1
ins-Nonachlor D'DDT	mg/kg mg/kg	0.2	-		-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0.2
o'-DDE	mg/kg mg/kg	0.1	240	600	400	180	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1
o'-DDT o'-DDE	mg/kg mg/kg	0.2	240	600	400	180	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2	<0.2 <0.1	<0.2 <0.1
o'-DDD Idrin	mg/kg mg/kg	0.1	10	20	20	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1
drin Aldehyde ethoxychlor	mg/kg	0.1	- 300	500	- 400	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1
drin Ketone odrin	mg/kg	0.1	-		-	-	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1
rex PPs	ma/ka	0.1	10	20	20	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
chlorvos	mg/kg	0.5		-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
methoate azinon (Dimpylate)	mg/kg mg/kg	0.5				-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5	<0.5
nitrothion alathion	ma/ka ma/ka	0.2			-	-	<0.2	<0.2	<0.2 <0.2	<0.2	<0.2	<0.2 <0.2
nlorpyrifos (Chlorpyrifos Ethyl) Irathion-ethyl (Parathion)	mg/kg mg/kg	0.2	<u>160</u> -	<u>340</u>	250 -	-	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2
omophos Ethyl ethidathion	mg/kg mg/kg	0.2	-		-	-	<0.2 <0.5	<0.2 <0.5	<0.2 <0.5	<0.2 <0.5	<0.2 <0.5	<0.2 <0.5
hion inphos-methyl (Guthion)	mg/kg mg/kg	0.2	-	-	-	-	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2
CBs ochlor 1016	mg/kg	0.2	-		-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ochlor 1221 ochlor 1232	mg/kg mg/kg	0.2			-		<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2
ochlor 1242	mg/kg	0.2			-	-	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2
ochlor 1248 ochlor 1254 ochlor 1260	mg/kg mg/kg	0.2	-	-	-	-	<0.2	<0.2	<0.2	<0.2 <0.2 <0.2	<0.2	<0.2
ochlor 1260 ochlor 1262	mg/kg mg/kg	0.2	-		-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
ochlor 1268 tal PCBs (Arochlors)	ma/ka ma/ka	0.2	- 1	- 1	- 1	-	<0.2 <1	<0.2	<0.2	<0.2	<0.2	<0.2 <1
etals senic	mg/kg	3	100	500	300	100	9	7	4	4	5	6
admium nromium	ma/ka ma/ka	0.3	20 100	150 500	90 300	- 570	<0.3 42	<0.3 20	<0.3 13	<0.3 15	<0.3 4.1	<0.3 46
ad	mg/kg mg/kg	0.5	6,000 300	30000 1200	17000 600	280 1100	<u>6</u> 21	9.3 31	7.2 19	9.8 12	18 40	3.3 14
ercury ckel	mg/kg mg/kg	0.01	40 400	120 1200	80 1200	 350	<0.05 3.5	<0.05 5.1	<0.05 2.5	<0.05 8	<0.05 2.5	<0.05 2.1
sbestos	ma/ka	0.5	7.400	60000	30000	880	25	150	80	170	44	19
bestos Detected - Fibre Identification in soil timated Fibres - Fibre Identification in soil	No unit %w/w	0	No Detected 0.01	No Detected 0.04	No Detected 0.02	-	No <0.01	No <0.01	No <0.01	No <0.01	Yes >0.01	No <0.01
bestos Detected - Fibre ID in bulk materials (cement fragment) DTES: concentrations are in mg/kg Table 1A(1), HIL Column 1 - Health Based Investigation Levels for Table 1A(1), HIL Column 2 - Health Based Investigation Levels for Table 1A(1), HIL Column 2 - Health Based Investigation Levels for Table 1A(1), HIL Column 3 - Health Based Investigation Levels for Table 1A(1), HIL Column 3 - Health Based Investigation Levels for Table 1A(1), HIL Column 3 - Health Based Investigation Levels for Table 1A(1), HIL Column 3 - Health Based Investigation Levels for Table 1A(1), HIL Column 3 - Health Based Investigation Levels for Tables 1B(1), HB(2), HB(3), HB(4), HB(5) and 1B(6), B(5) and 1B(6)	Residential with ISLs for Vapour Residential with (Recreational) F	0 Garden/Ad Intrusion for minimal op	No Detected	No Detected IF A (NEPC, 2013) ty Residential - NE access - NEHF B (I	No Detected HF B (NEPC, 2013) NEPC, 2013)		NA	NĂ	NĂ	NĂ	NA	NA NA



Laboratory ID Sample ID Depth (m)							SE173782.007 TP7/0.2-0.3 0.2 - 0.3	SE173782.008 S1 0.0 - 0.2	SE173782.027 QC1A	ES1732021-001 QC1B	SE173782.009 S2 0.0 - 0.2	SE173782.010 S3 0.0 - 0.2
Soil Type							Fill: Clay & Sand	Fill: Sand & Gravel	Duplicate of S1	Triplicate of S1	Fill: Sand & Gravel	Fill: Sand
Date Sampled							13/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
Compounds	Unit	EQL	Residential HIL A ¹	NEPA Residential HIL B ³	A 2013 Recreational HIL C ³	Urban Residential and Public Open Space - EIL ⁴						
TRHs TRH C6-C9	mg/kg	20	-	-	-	-	<20	<20	<20	<10	<20	<20
TRH C6-C10 TPH C6-C10 less BTEX (F1)	mg/kg mg/kg	25 25	- 45 ²	- 45 ²	-	- 180	<25 <25	<25 <25	<25 <25	<10 <10	<25 <25	<25 <25
IRH C10-C14 IRH C15-C28	mg/kg mg/kg	20 45					<20 <45	<20 <45	<20 <45	<50 <100	<20 <45	<20 <45
RH C29-C36 RH C37-C40 RH >C10-C16	mg/kg mg/kg mg/kg	45 100 25					<45 <100 <25	<45 <100 <25	<45 <100 <25	<100 NA <50	<45 <100 <25	<45 <100 <25
RH >C10-C16 less Naphthalene (F2) RH >C16-C34 (F3)	mg/kg mg/kg	25 25 90	110 ²	110 ²		120 300	<25 <90	<25	<25	<50	<25	<25
RH >C34-C40 (F4) RH >C10-C36	mg/kg mg/kg	120 110	-	-	-	2800	<120 <110	<120 <110	<120 <110	<100 <50	<120 <110	<120
RH >C10-C40 BTEX	ma/ka	210	-	-	-	-	<210	<210	<210	<50	<210	<210
lenzene ithylbenzene	mg/kg mg/kg	0.1	0.5 ² 55 ²	0.5 ² 55 ²	-	50 70	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.2 <0.5	<0.1 <0.1	<0.1 <0.1
oluene (ylene (m & p)	mg/kg mg/kg	0.1	160 ²	160 ²	-	85	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.5 <0.5	<0.1 <0.2	<0.1
(vlene (o) (vlene Total	mg/kg mg/kg	0.1		- 40 ²	-	- 105	<0.1 <0.3	<0.1 <0.3	<0.1 <0.3	<0.5 <0.5	<0.1 <0.3	<0.1 <0.3
PAHs Iaphthalene	mg/kg	0.1	3 ²	3 ²	-	170	<0.1	<0.1	<0.1	<0.5	<0.1	<0.1
-methylnaphthalene -methylnaphthalene	mg/kg mg/kg	0.1 0.1	- -		-	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.5 <0.5	<0.1 <0.1	<0.1 <0.1
cenaphthylene	mg/kg mg/kg	0.1	-	-	-		<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.5 <0.5	<0.1 <0.1	<0.1 <0.1
luorene henanthrene	mg/kg mg/kg	0.1	-	-			<0.1 <0.1	<0.1	<0.1	<0.5	<0.1	<0.1
Inthracene	mg/kg mg/kg	0.1					<0.1 <0.1	<0.1	<0.1	<0.5	<0.1	<0.1
Avrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg	0.1 0.1 0.1					<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.5 <0.5 <0.5	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
nrysene ienzo(b&i)fluoranthene ienzo(k)fluoranthene	mg/kg mg/kg mg/kg	0.1 0.1					<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.5 <0.5 <0.5	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Senzo(a)pyrene deno(1,2,3-cd)pyrene	mg/kg mg/kg	0.1				0.7	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.5 <0.5 <0.5	<0.1 <0.1 <0.1	<0.1
Dibenzo(a&h)anthracene Benzo(ghi)perylene	mg/kg mg/kg	0.1	-	-	-	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.5 <0.5	<0.1 <0.1	<0.1 <0.1
Carcinogenic PAHs (as BaP TEQ)-assume results <lor=0 (as="" <lor="LOR</td" bap="" carcinogenic="" pahs="" results="" teq)-assume=""><td>TEQ TEQ (mg/kg)</td><td>0.2</td><td>3 3</td><td>4 4</td><td>3 3</td><td>-</td><td><0.2 <0.3</td><td><0.2 <0.3</td><td><0.2 <0.3</td><td><0.5</td><td><0.2 <0.3</td><td><0.2 <0.3</td></lor=0>	TEQ TEQ (mg/kg)	0.2	3 3	4 4	3 3	-	<0.2 <0.3	<0.2 <0.3	<0.2 <0.3	<0.5	<0.2 <0.3	<0.2 <0.3
Carcinogenic PAHs (as BaP TEQ)-assume results <lor=lor (sum="" 2="" ahs="" of="" td="" total)<=""><td>TEQ (ma/ka) ma/ka</td><td>0.2</td><td>3 300</td><td>4 400</td><td>3 300</td><td>-</td><td><0.2 <0.8</td><td><0.2 <0.8</td><td><0.2 <0.8</td><td>1.2 <0.5</td><td><0.2 <0.8</td><td><0.2 <0.8</td></lor=lor>	TEQ (ma/ka) ma/ka	0.2	3 300	4 400	3 300	-	<0.2 <0.8	<0.2 <0.8	<0.2 <0.8	1.2 <0.5	<0.2 <0.8	<0.2 <0.8
DCPs lexachlorobenzene (HCB)	mg/kg	0.1	10	15	10	-	<0.1	<0.1	<0.1	<0.05	NA	<0.1
indane leptachlor	mg/kg mg/kg	0.1	- 6	- 10	- 10		<0.1 <0.1	<0.1	<0.1	<0.05 <0.05	NA NA	<0.1 <0.1
Idrin Dieldrin	mg/kg mg/kg	0.1	6	10	10	-	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	NA NA NA	<0.1 <0.1 <0.1
Alpha BHC Beta BHC Delta BHC	mg/kg mg/kg mg/kg	0.1 0.1 0.1					<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.05 <0.05 <0.05	NA NA NA	<0.1 <0.1 <0.1
Heptachlor epoxide Alpha Endosulfan	mg/kg mg/kg	0.1	-	-	-	-	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.05	NA NA	<0.1 <0.2
3eta Endosulfan Endosulfan sulphate	mg/kg mg/kg	0.1	270	400	340	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	NA NA	<0.1
Samma Chlordane	mg/kg mg/kg	0.1	50	90	70	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	NA NA	<0.1 <0.1
rans-Nonachlor ,p'-DDT	mg/kg mg/kg	0.2		-		-	<0.2	<0.2	<0.2	<0.05 <0.05	NA NA	<0.2 <0.2
,p'-DDE ,p'-DDD	mg/kg mg/kg	0.1	240	600	400	180	<0.1	<0.1 <0.1 <0.2	<0.1 <0.1 <0.2	<0.05 <0.05 <0.05	NA NA	<0.1
אָסָי-DDT ס,ס'-DDE ס,ס'-DDD	mg/kg mg/kg mg/kg	0.2 0.1 0.1	240	600	400	180	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.2 <0.1 <0.1	<0.05 <0.05 <0.05	NA NA NA	<0.2 <0.1 <0.1
Endrin Aldehyde	mg/kg mg/kg	0.1	<u> </u>	20	20		<0.1 <0.1	<0.1 <0.1	<0.1	<0.05 <0.05	NA NA	<0.1
Aethoxychlor Endrin Ketone	mg/kg mg/kg	0.1	300	<u>500</u> -	400	-	<0.1 <0.1	<0.1 <0.1	<0.1	<0.05	NA NA	<0.1
sodrin	mg/kg ma/ka	0.1	- 10	- 20	- 20	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.05 <0.05	NA NA	<0.1 <0.1
DPPs Dichlorvos	mg/kg	0.5		-	-	-	<0.5	<0.5	<0.5	<0.05	NA	<0.5
vimethoate Viazinon (Dimpylate)	mg/kg mg/kg	0.5 0.5	-		-		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.05 <0.05	NA NA	<0.5 <0.5
enitrothion Alathion Neuronifee (Chlomurifee Ethul)	mg/kg mg/kg	0.2					<0.2	<0.2	<0.2	<0.05	NA NA	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl) Parathion-ethyl (Parathion) Bromophos Ethyl	mg/kg mg/kg mg/kg	0.2 0.2 0.2	160 - -	<u>340</u> - -	250 - -		<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.05 <0.2 <0.05	NA NA NA	<0.2 <0.2 <0.2
thion	mg/kg mg/kg	0.2					<0.2 <0.5 <0.2	<0.2 <0.5 <0.2	<0.2 <0.5 <0.2	<0.05 <0.05 <0.05	NA NA NA	<0.2 <0.5 <0.2
vCBs	ma/ka	0.2	-		-	-	<0.2	<0.2	<0.2	<0.05	NA	<0.2
rochlor 1016 rochlor 1221	mg/kg mg/kg	0.2	-		-	-	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	NA NA	<0.2 <0.2
vrochlor 1232 vrochlor 1242	mg/kg mg/kg	0.2	-	-	-	-	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	NA NA	<0.2 <0.2
rochlor 1248 rochlor 1254	mg/kg mg/kg	0.2	-	-	-		<0.2	<0.2	<0.2 <0.2	<0.2	NA NA	<0.2
rochlor 1260 rochlor 1262 rochlor 1069	mg/kg mg/kg	0.2					<0.2	<0.2	<0.2	<0.2	NA NA	<0.2
rochlor 1268 otal PCBs (Arochlors) /letals	mg/kg ma/ka	0.2	- 1	- 1	1	-	<0.2 <1	<0.2	<0.2 <1	<0.2	NA NA	<0.2
rsenic	mg/kg	3	100	500 150	300	100	5	20	<u>18</u> 0.7	16 <0.1	5 <0.3	6
Sadmium Shromium Sopper	mg/kg mg/kg mg/kg	0.3 0.3 0.5	20 100 6,000	150 500 30000	90 300 17000	- 570 280	<0.3 15 2.3	0.8 16 28	0.7 15 28	<0.1 16 27	<0.3 18 3.5	<0.3 26 4.9
ead lercury	mg/kg mg/kg	0.5 1 0.01	300 40	1200 1200	600 80	1100 -	2.3 9 <0.05	73 0.1	63 0.09	64 0.1	9 <0.05	4.9 10 <0.05
inc	ma/ka ma/ka	0.5	400 7.400	1200 60000	1200 30000	350 880	1.7 16	8.3 150	8.4 180	9 152	2.5 28	1.5
Asbestos sbestos Detected - Fibre Identification in soil	No unit	0		No Detected		-	No	No	NA	NA	NA	No
stimated Fibres - Fibre Identification in soil Asbestos Detected - Fibre ID in bulk materials (cement fragment)	No unit %w/w No unit	0.01	0.01 No Detected	0.04	0.02	-	<0.01 NA	<0.01 NA	NA NA	NA NA	NA NA	<0.01 NA
Asbestos Detected - Fibre ID in bulk materials (cement fragment) NOTES: All concentrations are in mg/kg 1 - Table 1A(1), HIL Column 1 - Health Based Investigation Levels fi 2 - Table 1A(3), HSL A & HSL B Column 1 (Sand 0 m to <1 m) - Soi 3 - Table 1A(1), HIL Column 2 - Health Based Investigation Levels fi 4 - Table 1A(1), HIL Column 3 - Health Based Investigation Levels fi 5 - Tables 1B(1), HB(2), HB(3), HB(4), HB(5) and 1B(6), EILs and ES EQL - laboratory Estimated Quantitation Limit ** indicates that the criteria is not applicable for these analytes < Value = Concentration less than laboratory EQL 40	or Residential with I HSLs for Vapour or Residential with or (Recreational) F	n Garden/Ao r Intrusion fo n minimal op Public Oper	ccessible Soil - NEH or Low – High Densi oportunities for soil a o Space such as par	HF A (NEPC, 2013) ty Residential - NE access - NEHF B (ks, playgrounds, pl	HF B (NEPC, 2013) NEPC, 2013)		NA	I NA	NA	I NA	I NA	ı NA


Depth (m) Soill Type Date Sampled Compounds unit Ech Residential HLA ^A Residential Residential HLA ^A Residential	33 HIL C3 34 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 3 - 2 - 2 - 3 - 3 - 3 300 3 300 3 300 10 - 110 - 12 - 3 300 3 300 3 300 3 300 3 300 3 - 3 300 3 - 3 - 3 - 3 - 3 - 3 - 3 - - - - - - - - - - - - - <th>Urban Residential and Public Open Space - EIL 4 - - - - - - 180 - 120 300 2 - 120 300 - 120 300 - 120 300 - 120 300 - 120 300 - 120 300 - - - 105 - - - - - - - - - - - - - - - - - -</th> <th>0.0 - 0.2 Fill: Clay 14/12/2017 20 20 225 225 225 225 225 225</th> <th>0.0 - 0.2 Fill: Sand & Gravel 14/12/2017 </th> <th>0.0 - 0.2 Fill: Clay & Sand 14/12/2017 </th> <th>0.0 - 0.2 Fill: Clay 14/12/2017 </th> <th>0.0 - 0.2 Fill: Sand & Gravel 14/12/2017 </th> <th>Complexe of \$8 14/12/2017 </th>	Urban Residential and Public Open Space - EIL 4 - - - - - - 180 - 120 300 2 - 120 300 - 120 300 - 120 300 - 120 300 - 120 300 - 120 300 - - - 105 - - - - - - - - - - - - - - - - - -	0.0 - 0.2 Fill: Clay 14/12/2017 20 20 225 225 225 225 225 225	0.0 - 0.2 Fill: Sand & Gravel 14/12/2017	0.0 - 0.2 Fill: Clay & Sand 14/12/2017 	0.0 - 0.2 Fill: Clay 14/12/2017 	0.0 - 0.2 Fill: Sand & Gravel 14/12/2017	Complexe of \$8 14/12/2017
Date Sampled Unit Ec. Residential HLA ¹ Reside	Attial Recreational 33 - 34 - 35 - 36 - 37 - 38 - 39 - 30 - 30 - 31 - 32 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 340 -	Residential and Public Open Space - EIL ⁴ - - - - - - - - - - - - - - - - - - -	14/12/2017	14/12/2017	14/12/2017 14/12/2017	14/12/2017	14/12/2017 -20 <25 <25 <26 <45 <100 <25 <20 <45 <100 <25 <26 <90 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	
Compounds Unit Residential HLA Residentia HLA Residential HLA	Attial Recreational 33 - 34 - 35 - 36 - 37 - 38 - 39 - 30 - 30 - 31 - 32 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 33 - 340 -	Residential and Public Open Space - EIL ⁴ - - - - - - - - - - - - - - - - - - -	<20 <20 <25 <20 <45 <100 <25 <26 <25 <290 <120 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.8 NA NA NA	<20 <25 <25 <20 <45 <100 <26 <25 <26 <26 <27 <45 <100 <26 <27 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <tr< th=""><th><20 <25 <25 <25 <26 <26 <20 <45 <45 <25 <25 <25 <25 <25 <25 <25 <25 <26 <100 <110 <101 <0.1 <0.1</th><th><20 <25 <25 <26 <26 <45 <45 <45 <45 <45 <225 <20 <420 <100 <210 <110 <0.1 <0.1</th><th><20 <25 <20 <45 <100 <25 <20 <45 <20 <100 <25 <26 <90 <110 <0.1 <0.1 <</th><th></th></tr<>	<20 <25 <25 <25 <26 <26 <20 <45 <45 <25 <25 <25 <25 <25 <25 <25 <25 <26 <100 <110 <101 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<20 <25 <25 <26 <26 <45 <45 <45 <45 <45 <225 <20 <420 <100 <210 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<20 <25 <20 <45 <100 <25 <20 <45 <20 <100 <25 <26 <90 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	
Sompounds Unit Fat. Hit.A ¹ Hi	33 HIL C3 34 - 1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 3 - 2 - 2 - 3 - 3 - 3 300 3 300 3 300 10 - 110 - 12 - 3 300 3 300 3 300 3 300 3 300 3 - 3 300 3 - 3 - 3 - 3 - 3 - 3 - 3 - - - - - - - - - - - - - <th>Residential and Public Open Space - EIL⁴ - - - - - - - - - - - - - - - - - - -</th> <th><25 <25 <26 <26 <45 <45 <45 <45 <45 <25 <26 <27 <27 <28 <290 <120 <110 <0.1 <0.1<</th> <th><25 <20 <45 <100 <25 <26 <25 <20 <25 <20 <100 <25 <90 <120 <110 <0.1 <0.1 <th><25 <25 <26 <26 <45 <45 <45 <27 <45 <28 <29 <20 <10 <10 <10 <110 <0.1 <0.8 NA NA</th><th><25 <25 <26 <45 <100 <25 <28 <25 <290 <120 <110 <0.1 <0.2 <0.3 <0.2 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <</th><th><25 <20 <45 <100 <25 <25 <25 <25 <25 <25 <26 <25 <26 <25 <25 <26 <270 <100 <0.1 <0</th><th><pre> </pre> <25 <26 <26 <27 </th></th>	Residential and Public Open Space - EIL ⁴ - - - - - - - - - - - - - - - - - - -	<25 <25 <26 <26 <45 <45 <45 <45 <45 <25 <26 <27 <27 <28 <290 <120 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1<	<25 <20 <45 <100 <25 <26 <25 <20 <25 <20 <100 <25 <90 <120 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <th><25 <25 <26 <26 <45 <45 <45 <27 <45 <28 <29 <20 <10 <10 <10 <110 <0.1 <0.8 NA NA</th> <th><25 <25 <26 <45 <100 <25 <28 <25 <290 <120 <110 <0.1 <0.2 <0.3 <0.2 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <</th> <th><25 <20 <45 <100 <25 <25 <25 <25 <25 <25 <26 <25 <26 <25 <25 <26 <270 <100 <0.1 <0</th> <th><pre> </pre> <25 <26 <26 <27 </th>	<25 <25 <26 <26 <45 <45 <45 <27 <45 <28 <29 <20 <10 <10 <10 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.8 NA	<25 <25 <26 <45 <100 <25 <28 <25 <290 <120 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	<25 <20 <45 <100 <25 <25 <25 <25 <25 <25 <26 <25 <26 <25 <25 <26 <270 <100 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0	<pre> </pre> <25 <26 <26 <27
RH C6-C3 maka 20 PH C6-C10 less BTEX (F1) mg4sa 22 45 ² 45 ² PH C6-C10 less BTEX (F1) mg4sa 22 RH C2-C40 mg4sa 100 RH C2-C40 mg4sa 0.1 RH C2-C40 mg4sa 0.1 RH C2-C40 mg4sa 0.1 52 55 duene mg4sa 0.1 52 55 <th></th> <th>180 - - 120 300 2800 - - 50 70 85 - 105 - - 0.7 -</th> <th><25 <25 <26 <26 <45 <45 <45 <45 <45 <25 <26 <27 <27 <28 <290 <120 <110 <0.1 <0.1<</th> <th><25 <20 <45 <100 <25 <26 <25 <20 <25 <20 <100 <25 <90 <120 <110 <0.1 <0.1 <th><25 <25 <26 <26 <45 <45 <45 <27 <45 <28 <29 <20 <10 <10 <10 <110 <0.1 <0.8 NA NA</th><th><25 <25 <26 <45 <100 <25 <28 <25 <290 <120 <110 <0.1 <0.2 <0.3 <0.2 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <</th><th><25 <20 <45 <100 <25 <25 <25 <25 <25 <25 <26 <25 <26 <25 <25 <26 <270 <100 <0.1 <0</th><th><pre> </pre> <25 <26 <26 <27 </th></th>		180 - - 120 300 2800 - - 50 70 85 - 105 - - 0.7 -	<25 <25 <26 <26 <45 <45 <45 <45 <45 <25 <26 <27 <27 <28 <290 <120 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1<	<25 <20 <45 <100 <25 <26 <25 <20 <25 <20 <100 <25 <90 <120 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <th><25 <25 <26 <26 <45 <45 <45 <27 <45 <28 <29 <20 <10 <10 <10 <110 <0.1 <0.8 NA NA</th> <th><25 <25 <26 <45 <100 <25 <28 <25 <290 <120 <110 <0.1 <0.2 <0.3 <0.2 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <</th> <th><25 <20 <45 <100 <25 <25 <25 <25 <25 <25 <26 <25 <26 <25 <25 <26 <270 <100 <0.1 <0</th> <th><pre> </pre> <25 <26 <26 <27 </th>	<25 <25 <26 <26 <45 <45 <45 <27 <45 <28 <29 <20 <10 <10 <10 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.8 NA	<25 <25 <26 <45 <100 <25 <28 <25 <290 <120 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <	<25 <20 <45 <100 <25 <25 <25 <25 <25 <25 <26 <25 <26 <25 <25 <26 <270 <100 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0	<pre> </pre> <25 <26 <26 <27
PH C C 10 less BTEX (F1) mg/kg 25 46. ³ 44. RTC 10-C 10 less BTEX (F1) mg/kg 45. - 45. RTC 10-C 10 less Naphthalen (F2) mg/kg 45. - 45. RT 10-C 10 less Naphthalen (F2) mg/kg 90. - - RT 10-C 10 less Naphthalen (F2) mg/kg 90. - - RT 10-C 10-C 3s Naphthalen (F2) mg/kg 10. - - RT 10-C 10-C 3s mg/kg 0.1 0.5. ² 0.0 RT 10-C 10-C 3s mg/kg 0.1 0.5. ² 0.0 Attract 10-C 3s mg/kg 0.1 0.1 - 0.1 Attract 10-C 3s mg/kg 0.1 - 0.1 - Attract 10-C 3s mg/kg 0.1 - 0.1 <td></td> <td>180 - - 120 300 2800 - - 50 70 85 - 105 - - 0.7 -</td> <td><25 <20 <45 <45 <45 <45 <20 <25 <90 <120 <110 <210 <0.1 <0.1</td> <td><25</td> <20		180 - - 120 300 2800 - - 50 70 85 - 105 - - 0.7 -	<25 <20 <45 <45 <45 <45 <20 <25 <90 <120 <110 <210 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<25	<25 <20 <45 <45 <45 <45 <45 <45 <45 <26 <27 <28 <290 <120 <110 <210 <110 <210 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.8 NA	<25	<25	<25 <20 <45 <45 <45 <45 <45 <45 <45 <25 <20 <100 <120 <110 <210 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.8 NA NA
RH C15-C28 maka 45 - RH C28-C26 maka 100 - - RH C26-C26 maka 0.1 5.2 0.0 downe maka 0.1 5.2 0.0 downe maka 0.1 5.2 0.0 downe maka 0.1 160 ² 0.0 downe maka 0.1 - - Ats - - - - downe maka 0.1 - - downe maka 0.1 - - downe			<45 <45 <100 <25 <25 <20 <120 <110 <210 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<45	<45	<45	<45	<45 <45 <45 <45 <25 <20 <210 <110 <210 <10 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.8 NA NA NA
RH G27-C40 maka 100 - - RH > 5010-C16 maka 25 110 ³ 11 RH > 5010-C16 maka 25 110 ³ 11 RH > 5010-C16 maka 20 - - RH > 5010-C16 maka 20 - - RH > 5010-C16 maka 20 - - RH > 5010-C16 maka 0.1 55 ³ 30 RH > 5010-C16 maka 0.1 55 ³ 30 Viene (m & p) maka 0.1 55 ³ 30 Viene (m & p) maka 0.2 - - Viene (m & p) maka 0.1			<pre><100 <25 <25 <25 <90 <120 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.</pre>	<100	<pre><100 <100 <25 <25 <25 <25 <25 <20 <120 <110 <10 <10 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<100	<100	<100 <25 <25 <25 <20 <120 <110 <110 <0.1 <0.1 <0.1 <0.1 <0.1 <0.
RH > 010 - 016 iess Naphtalene (F2) maka 00 - 10 - 10 - 10 - 10 - 10 - 10 - 10		300 2800 - - - - - - - - - - - - -	<25 <90 <120 <110 <210 <210 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.8 NA <	<25	<pre><25 <90 <120 <110 <210 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<25 <90 <120 <110 <210 <211 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<25	<pre><25 <90 <120 <120 <120 <210 <210 <210 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0</pre>
RH > 21F > 23F > 2		2800 	<120 <110 <110 <210 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.8 NA NA NA NA NA NA NA NA NA NA	<120	<pre><120 <110 <110 <210 </pre> <10.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<120 <110 <210 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<120	<pre><120 <110 <210 </pre> <10 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.8 NA NA NA
RH > 210-C33 Part > 102 Part > 10	2		<110 <210 <0.1 <0.1 <0.1 <0.2 <0.1 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<110	<pre><110 <110 <10.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<pre><110 <110 <10.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<110	<pre><110 <110 <210 </pre>
TEX marka 0.1 0.5 0.1 thydenzene mg/kg 0.1 160 ² 16 viene (m & D) mg/kg 0.1 160 ² 16 viene (m & D) mg/kg 0.3 40 ² 40 viene Total mg/kg 0.1 5 ² 3 methynaphthalene mg/kg 0.1 5 ² 3 <	- -	50 70 85 - - - - - - - - - - - - - - - - - -	<0.1 <0.1 <0.1 <0.1 <0.2 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.8 NA NA<	<0.1	 <0.1 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.3 <0.1 <0.1<td> <0.1 <0.1 <0.1 <0.2 <0.3 <0.3 <0.1 </td><td><0.1</td> <0.1	 <0.1 <0.1 <0.1 <0.2 <0.3 <0.3 <0.1 	<0.1	 <0.1 <0.1 <0.1 <0.2 <0.1 <0.3 <0.3 <0.1 <0.2 <0.3 <0.2 <0.8 NA NA
hybene mg/kq 0.1 55 ² 55 vene mg/kq 0.1 160 ² 160 vene (o) mg/kq 0.1 - - vene (o) mg/kq 0.1 - - ghthalene mg/kq 0.1 3 ² 3 methvinaphthalene mg/kq 0.1 - - methvinaphthalene mg/kq 0.1 - - areaphthytene mg/kq	- -	70 85 - 105 - - <td> <0.1 <0.1 <0.2 <0.1 <0.3 <0.1 <li< td=""><td><0.1</td> <0.2</li<></td> <0.1	 <0.1 <0.1 <0.2 <0.1 <0.3 <0.1 <li< td=""><td><0.1</td> <0.2</li<>	<0.1	 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.3 <0.1 <li< td=""><td><0.1</td> <0.1</li<>	<0.1	<0.1	 <0.1 <0.1 <0.2 <0.1 <0.2 <0.1 <0.3
rene (m & D) marka 0.2 . vene Total marka 0.1 . . . vene Total marka 0.1 aphthalene marka 0.1 . <td></td> <td></td> <td><0.2 <0.1 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td> <td><0.2</td> <0.1			<0.2 <0.1 <0.1 <0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.2	 <0.2 <0.1 <0.2 <0.3 <0.2 <0.8 NA NA<td><0.2 <0.2</td> <0.1	<0.2 <0.2	<0.2	 <0.2 <0.1 <0.3 <0.1 <li< td=""></li<>
Hes mg/kg 0.3 44° 44 Aphs mg/kg 0.1 3° 3 aphthalene mg/kg 0.1 - - amethylnaphthalene mg/kg 0.1 - - average mg/kg 0.1 - -		105 170 - - - - - - - - - - - - -	<0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.8 NA NA NA NA NA NA NA NA NA NA	<0.3	 <0.3 <0.1 <li< td=""><td> <0.3 <0.1 </td><td><0.3</td> <0.1</li<>	 <0.3 <0.1 	<0.3	<0.3 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.8 <0.8 <0.8 <0.8 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.8 NA NA NA NA
aphthalenemg/kg0.133methydaothhalenemg/ka0.1-methydaothhalenemg/ka0.1-craabthydenemg/ka0.1-craabthydenemg/ka0.1-craabthydenemg/ka0.1-worantemg/ka0.1-beraattreemg/ka0.1-worantenemg/ka0.1-worantenemg/ka0.1-worantenemg/ka0.1-worantenemg/ka0.1-worantenemg/ka0.1-encolalanthracenemg/ka0.1-encolalanthracenemg/ka0.1-encolalanthracenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1-encolalijovrenemg/ka0.1- <t< td=""><td></td><td></td><td> <0.1 <li< td=""><td><0.1</td> <0.1</li<></td> <0.1</t<>			 <0.1 <li< td=""><td><0.1</td> <0.1</li<>	<0.1	 <0.1 <li< td=""><td><0.1 <0.1</td> <0.1</li<>	<0.1 <0.1	<0.1	 <0.1 <li< td=""></li<>
methylaphthalene ma/ka 0.1 - - cenaphthene ma/ka 0.1 - - cenaphthene ma/ka 0.1 - - worene ma/ka 0.1 - - worene ma/ka 0.1 - - worene ma/ka 0.1 - - uorente ma/ka 0.1 - - uoranthene ma/ka 0.1 - - woranthene ma/ka 0.1 - - </td <td></td> <td></td> <td> <0.1 <li< td=""><td><0.1</td> <0.1</li<></td> <0.1			 <0.1 <li< td=""><td><0.1</td> <0.1</li<>	<0.1	 <0.1 <li< td=""><td><0.1 <0.1</td> <0.1</li<>	<0.1 <0.1	<0.1	 <0.1 <li< td=""></li<>
cenaphthylenema/ka ma/ka0.1.uorenema/ka ma/ka0.1.uorenema/ka ma/ka0.1.uorenema/ka ma/ka0.1.uorenema/ka ma/ka0.1.uorenema/ka ma/ka0.1.uorenema/ka ma/ka0.1.uorentenema/ka ma/ka0.1.uorentenema/ka ma/ka0.1.uorentenema/ka ma/ka0.1.uorentenema/ka ma/ka0.1.uorentenema/ka ma/ka0.1.uorentenema/ka ma/ka0.1.uorentenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1.uorenalitarezenema/ka ma/ka0.1			<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.8 NA <p< td=""><td><0.1</td> <0.1</p<>	<0.1	 <0.1 <li< td=""><td><0.1</td> <0.1</li<>	<0.1	<0.1	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>
uorene mg/kq 0.1 - htbracene mg/kq 0.1 - uoranthene mg/kq 0.1 - vene mg/kq 0.1 - ercolabathracene mg/kq 0.1 - hrusene mg/kq 0.1 - encolkhiltuoranthene mg/kq			 <0.1 <0.2 <0.3 <0.2 <0.8 NA <	<0.1	 <0.1 <0.2 <0.3 <0.2 <0.8 NA 	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.8 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.4 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>
Intracene marka 0.1 - vrene marka 0.1 - encolabanthracene marka 0.1 - hnysne marka 0.1 - encolabanthracene marka 0.1 - encolabanthracene marka 0.1 - encolaburanthene marka 0.1 - encolaburanthene marka 0.1 - encolaburanthene marka 0.1 - encolaburanthracene marka 0.1 - encolaburanthracene marka 0.1 - encolaburanthracene marka 0.1 - arcinoancin PAHs (as BaP TEQ)-assume results -LOR=0 TEQ (marka) 0.2 3 arcinoancin PAHs (as BaP TEQ)-assume results -LOR=0 TEQ (marka) 0.1 6 Arcinoancin PAHs (as BaP TEQ)-assume results -LOR=10 marka 0.1 6 Arcinoancin PAHs (as BaP TEQ)-assume results -LOR=10 marka 0.1 - ecachlorobenzene (HCB)		· · · · · · · · · · · · · · · · · · ·	 <0.1 <0.2 <0.3 <0.2 <0.8 NA 	<0.1	 <0.1 <0.2 <0.3 <0.2 <0.3 <0.2 <0.8 NA 	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
marka marka 0.1 - ihrysene marka 0.1 - - ihrysene marka 0.1 - - enzolskilluoranthene marka 0.1 - - enzolskilluoranthene marka 0.1 - - enzolskilluoranthene marka 0.1 - - indenol 1.2 actionogenic PAHs (as BaP TEQ)-assume results <lor=0< td=""> TEQ (marka) 0.1 - aracinoaenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""> TEQ (marka) 0.2 3 4 Atracinoaenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""> TEQ (marka) 0.2 3 4 Atracinoaenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""> TEQ (marka) 0.2 3 4 Atracinoaenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""> TEQ (marka) 0.1 6 1 Light (Sum of tal) marka 0.1 6 1 4 DCPs marka 0.1 6 1 4 Idetanth marka 0.1</lor=lor<></lor=lor<></lor=lor<></lor=lor<></lor=0<>		- - - - - - - - - - - - - - - - - - -	 <0.1 <0.2 <0.2 <0.8 NA 	<0.1	 <0.1 <0.2 <0.3 <0.2 <0.8 NA 	0.1 <0.1 <0.1 <0.1 0.1 0.1 0.1 <0.1 <0.1	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Invesee marka 0.1 - enzolbkilluoranthene marka 0.1 - ibenzolakhianthracene marka 0.1 - arcinoqueric PAHs (as BaP TEQ)-assume results <lor=lor< td=""> TEQ (marka) 0.2 3 arcinoqueric PAHs (as BaP TEQ)-assume results <lor=lor< td=""> TEQ (marka) 0.2 3 Arcinoqueric PAHs (as BaP TEQ)-assume results <lor=lor< td=""> TEQ (marka) 0.2 3 CPS marka 0.1 - - ferarchordenzene (HCB) marka 0.1 - - ferarchordenzene (HCB) marka 0.1 - - ferarchordenzene marka 0.1 - - ferarchordenzene marka 0.1 - - ferarchordenzena/de mark</lor=lor<></lor=lor<></lor=lor<>		- - - - - - - - - - - - - - - - - - -	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.8 NA NA NA NA NA NA NA NA NA NA NA NA NA	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.8 NA	<pre><0.1 </pre> <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.8 </td <td><0.1</td> <0.1	<0.1	<pre><0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>
marka 0.1 - enzolkilluoranthene marka 0.1 - arcinoaenic PAHs (as BaP TEQ)-assume results -LOR-LOR: TEQ (marka) 0.3 3 draindane marka 0.1 6 1 levachlorobenzene (HCB) marka 0.1 6 1 udnin marka 0.1 - - leptachlor marka 0.1 - - leptacholizoboutan marka 0.1	- - - - - - - - - - - - - - - - - - -	- 0.7 - - - - - - - - - - - - -	<0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.8 NA NA NA NA NA NA NA NA NA NA NA NA NA	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.3 <0.2 <0.8 NA NA NA NA NA NA NA NA NA NA	<pre><0.1 0.1 0.1 0.1 0.1 0.1 <0.2 <0.2 <0.3 <0.2 <0.8 </pre>	<0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.8 NA NA NA
$\begin{array}{c cccc} marka & 0.1 & \cdot & marka & 0.1 & 1 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1 & 1$			<0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.8 NA NA NA NA NA NA NA NA NA NA NA NA NA	<0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.2 <0.2 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.8 NA	0.1 0.1 <0.1 <0.2 <0.3 <0.2 <0.3 <0.2 <0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.2 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.2 <0.3 <0.2 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.3 <0.2 <0.4 <0.4 <0.2 <0.5 <0.2 <0.5 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0	<0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.2 <0.3 <0.2 <0.3 <0.2 <0.8 NA NA NA
bibenzo(akh)anthracene ma/ka 0.1 - aracinoagenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""> TEQ 0.2 3 4 aracinoagenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""> TEQ (ma/ka) 0.2 3 4 aracinoagenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""> TEQ (ma/ka) 0.2 3 4 aracinoagenic PAHs (as BaP TEQ)-assume results <lor=lor 2<="" td=""> ma/ka 0.1 3 3 4 Aths (Sum of total) ma/ka 0.1 1 300 44 OCPs ma/ka 0.1 6 1 <t< td=""><td>- 3 3 3 - 10 - 10 - - - - - - - - - - - - -</td><td></td><td><0.1 <0.2 <0.3 <0.2 <0.8 NA NA NA NA NA NA NA NA NA NA NA NA NA</td><td><0.1</td> <0.2</t<></lor=lor></lor=lor<></lor=lor<></lor=lor<>	- 3 3 3 - 10 - 10 - - - - - - - - - - - - -		<0.1 <0.2 <0.3 <0.2 <0.8 NA NA NA NA NA NA NA NA NA NA NA NA NA	<0.1	<0.1 <0.2 <0.3 <0.3 <0.8 NA NA NA NA NA NA NA NA NA NA NA	0.1 <0.2 <0.3 <0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.2 <0.3 <0.2 <0.8 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.2 <0.3 <0.2 <0.8 NA NA
arcinopenic PAHs (as BaP TEQ)-assume results <lor=lor< th=""> TEQ 0.2 3 4 arcinopenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""> TEQ (ma/kq) 0.2 3 4 arcinopenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""> TEQ (ma/kq) 0.2 3 4 Artis (Sum of total) ma/kq 0.1 300 44 Evachlorobenzene (HCB) ma/kq 0.1 - - ierachlorobenzene (HCB) ma/kq 0.1 - - ierachlorobenzene (HCB) ma/kq 0.1 - - - ierachlorobenzene (HCB) ma/kq 0.1 - - - - ierachlorobenzene (HCB) ma/kq 0.1 - <td< td=""><td>3 3 300 </td><td></td><td><0.2 <0.3 <0.2 <0.8 NA NA NA NA NA NA NA NA NA NA NA NA NA</td><td><pre><0.2 <0.3 <0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre></td><td><0.2 <0.3 <0.2 <0.8 NA NA NA NA NA NA NA NA NA</td><td><0.2 <0.3 <0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td><td><0.2 <0.3 <0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td><td><0.2 <0.3 <0.2 <0.8 NA NA NA</td></td<></lor=lor<></lor=lor<></lor=lor<>	3 3 300 		<0.2 <0.3 <0.2 <0.8 NA NA NA NA NA NA NA NA NA NA NA NA NA	<pre><0.2 <0.3 <0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</pre>	<0.2 <0.3 <0.2 <0.8 NA NA NA NA NA NA NA NA NA	<0.2 <0.3 <0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.3 <0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.3 <0.2 <0.8 NA NA NA
arcinogenic PAHs (as BaP TEQ)-assume results <lor=lor 2<="" th=""> TEQ (mg/kg) 0.2 3 44 Aks (Sum of total) mg/kg 0.1 300 40 CPs mg/kg 0.1 10 1 exachlorobenzene (HCB) mg/kg 0.1 6 1 entachlor mg/kg 0.1 6 1 ieldrin mg/kg 0.1 6 1 ieldrin mg/kg 0.1 6 1 ieldrin mg/kg 0.1 - - ield BHC mg/kg 0.1 - - eta BHC mg/kg 0.1 - - igha Endosulfan mg/kg 0.1 - - igha Endosulfan mg/kg 0.1 - - - igha Endosulfan mg/kg 0.1 - - - igha Endosulfan mg/kg 0.1 - - - - op'DDT mg/kg 0.1 <td< td=""><td>10 </td><td></td><td><0.2 <0.8 NA NA NA NA NA NA NA NA NA NA NA</td><td><0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td><td><0.2 <0.8 NA NA NA NA NA NA NA NA</td><td><0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td><td><0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1</td><td><0.2 <0.8 NA NA NA</td></td<></lor=lor>	10 		<0.2 <0.8 NA NA NA NA NA NA NA NA NA NA NA	<0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.8 NA NA NA NA NA NA NA NA	<0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.8 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.8 NA NA NA
CCPs maka 0.1 10 1 exachlorobenzene (HCB) ma/ka 0.1 ma/ka 0.1 - eptachlor ma/ka 0.1 ma/ka 0.1 - - ieldrin ma/ka 0.1 6 1 - - ieldrin ma/ka 0.1 - - - - ieldrin ma/ka 0.1 - - - - ieldrin ma/ka 0.1 - - - - iela BHC ma/ka 0.1 - - - - iela BHC ma/ka 0.1 -	10 		NA NA NA NA NA NA NA NA NA NA	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	NA NA NA NA NA NA	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	NA NA NA
indane ma/ka 0.1 - idrin ma/ka 0.1 6 1 idrin ma/ka 0.1 6 1 idrin ma/ka 0.1 6 1 ieldrin ma/ka 0.1 - 0 ield BHC ma/ka 0.1 - 0 eptachlor epoxide ma/ka 0.1 - 0 eptachlor epoxide ma/ka 0.1 - 0 ipha Endosulfan ma/ka 0.1 - 0 ipha Endosulfan ma/ka 0.1 - 0 ipha Endosulfan ma/ka 0.1 - 0 0 ipha Endosulfan ma/ka 0.1 50 9 9 0			NA NA NA NA NA NA NA NA NA	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	NA NA NA NA NA NA	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	NA NA
Iddin mg/kg 0.1 6 1 ieldrin mg/kg 0.1 - - - jaha BHC mg/kg 0.1 - - - eta BHC mg/kg 0.1 - - - jaha Endosulfan mg/kg 0.1 - - - jeha Endosulfan mg/kg 0.1 - - - jeha Endosulfan mg/kg 0.1 - - - jeha Endosulfan mg/kg 0.1 - - - - idmarma Chlordane mg/kg 0.1 50 9 -	10 	- - - - - - - - - - - - - - - - - - -	NA NA NA NA NA NA NA NA	<0.1 <0.1 <0.1 <0.1	NA NA NA	<0.1 <0.1 <0.1	<0.1 <0.1	
Ipha BHC mg/kg 0.1 - eta BHC mg/kg 0.1 - eta BHC mg/kg 0.1 - ieta BHC mg/kg 0.1 - ieta BHC mg/kg 0.1 - ieta Endosulfan mg/kg 0.1 - ieta Endosulfan mg/kg 0.1 - iarama Chlordane mg/kg 0.1 50 9 jans-Nonachlor mg/kg 0.1 50 9 jo-DDT mg/kg 0.1 240 66 jo-DDD mg/kg 0.1 10 2 indrin Aldehyde mg/kg 0.1 - - indrin Aldehyde mg/kg 0.1 -			NA NA NA NA NA	<0.1 <0.1	NA NA	<0.1		NA
International system mg/kg 0.1 - Jaha Endosulfan mg/kg 0.1 - - Jaha Endosulfan mg/kg 0.1 - - - Jaha Endosulfan mg/kg 0.1 -			NA NA NA NA					NA
bib a Endosulfan ma/ka 0.2 bib a Endosulfan ma/ka 0.2 ma/ka 0.1 ma/ka 0.1 arma Chlordane ma/ka 0.1 50 9 upha Chlordane ma/ka 0.1 240 60 upha Chlordane ma/ka 0.1 10 2 upha Chlordane ma/ka 0.1 10 2 upha Chlordane ma/ka 0.1 10 2 upha Chlordane ma/ka 0.1 1 10 2 upha Chlordane ma/ka 0.1 1 <t< td=""><td></td><td></td><td>NA</td><td>< 0.1</td><td>NA</td><td><0.1 <0.1</td><td><0.1 <0.1</td><td>NA NA</td></t<>			NA	< 0.1	NA	<0.1 <0.1	<0.1 <0.1	NA NA
ndosulfan sulphate ma/kq 0.1 narma Chiordane ma/kq 0.1 joha Chiordane ma/kq 0.1 ans-Nonachlor ma/kq 0.2 joha Chiordane ma/kq 0.1 joha Chiordane ma/kq 0.2 joha Chiordane ma/kq 0.1 johachindichiordane				<0.2	NA NA	<0.1 <0.2	<0.1 <0.2	NA NA
Jamma Chlordane mg/kg 0.1 50 9 Jpha Chlordane mg/kg 0.1 50 9 Jpha Chlordane mg/kg 0.2 - 1 Jpha Chlordane mg/kg 0.2 - 1 Jp-DDT mg/kg 0.1 240 66 Jp-DDE mg/kg 0.1 10 2 Indrin Aldehyde mg/kg 0.1 10 2 Indrin Ketone mg/kg 0.1 1 1 1 Sodrin mg/kg 0.1 10 2 2 DPPs mg/kg 0.5 - 1 10 2 Diazinon (Dimpvlate) mg/kg 0.2 - 1 10	70	-	NA	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1 <0.1	NA
mg/kg 0.2 - - pp-DDT mg/kg 0.2 - 66 pp-DDE mg/kg 0.1 66 66 pp-DDT mg/kg 0.1 66 6			NA NA	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1 <0.1	NA NA
mg/kg 0.1 240 66 .p ⁵ -DDT mg/kg 0.1 66 .p ⁵ -DDD mg/kg 0.1 66 .p ⁵ -DDD mg/kg 0.1 60 indrin mg/kg 0.1 - 90 indrin Alebryde mg/kg 0.1 - 90 indrin Ketone mg/kg 0.1 - - sodrin mg/kg 0.1 - - - Jirke Nores mg/kg 0.1 - - - Jarzinon (Dimykate) mg/kg 0.5 - - - Jarzinon (Dimykate) mg/kg 0.2 - - - Jaration-Chinordes Ethyl mg/kg 0.2 - - - Jaration-Chinordes Ethyl mg/kg 0.2 -		-	NA NA	<0.2 <0.2	NA NA	<0.2 <0.2	<0.2 <0.2	NA
p:-DDT mg/kg 0.2 240 66 p:-DDE mg/kg 0.1 66	400	180	NA NA	<0.1 <0.1	NA NA	<0.1	<0.1 <0.1	NA
marka 0.1 ndrin ma/ka 0.1 ndrin ma/ka 0.1 ndrin ma/ka 0.1 ndrin ma/ka 0.1 dethoxychlor ma/ka 0.1 indrin Aldehyde ma/ka 0.1 indrin Ketone ma/ka 0.1 sodrin ma/ka 0.1 indrix ma/ka 0.1 interces ma/ka 0.5 interboate ma/ka 0.5 interboate ma/ka 0.5 interboate ma/ka 0.2 interbion ma/ka 0.2 interbion ma/ka 0.2 interbionerbin ma/ka 0.2 interbionerbin ma/ka 0.2 interbionerbin ma/ka 0.2 <	400	180	NA NA	<0.2	NA NA	<0.2	<0.2	NA
indrin Aldehyde mg/kg 0.1		-	NA NA	<0.1 <0.1	NA NA	<0.1	<0.1 <0.1	NA
indrin Ketone mg/kg 0.1 - sodrin mg/kg 0.1 - - ifrex mg/kg 0.1 10 2 JPPs mg/kg 0.5 - - bichlorvos mg/kg 0.5 - - binethoate mg/kg 0.5 - - biazion (Dimyvlate) mg/kg 0.2 - - falathion mg/kg 0.2 - - falathion mg/kg 0.2 - - fromophos Ethyl mg/kg 0.2 - - fildathion mg/kg 0.2 - - formophos Ethyl mg/kg 0.2 - -	-	-	NA NA	<0.1 <0.1	NA NA	<0.1	<0.1 <0.1	NA
Mirex mg/kg 0,1 10 2 DPPs mg/kg 0,5 - - Dimethoate mg/kg 0,5 - - Dimethoate mg/kg 0,5 - - datathion mg/kg 0,2 - - Atalathion mg/kg 0,2 - - Arathion-ethyl (Parathion) mg/kg 0,2 - - Arathion-ethyl (Parathion) mg/kg 0,2 - - Arathion-ethyl (Parathion) mg/kg 0,2 - - Viromophos Ethyl mg/kg 0,2 - - Arathion-ethyl (Rarathion) mg/kg 0,5 - -	-		NA NA NA	<0.1 <0.1 <0.1	NA NA NA	<0.1 <0.1	<0.1 <0.1 <0.1	NA NA NA
ichlorvos ma/kq 0.5 - imrethoat ma/kq 0.5 - - imrethoat ma/kq 0.5 - - enitrothion ma/kq 0.2 - - atation (Dimpylate) ma/kq 0.2 - - atlathion ma/kq 0.2 - - hlorgyrifos (Chloroyfios Ethyl) ma/kq 0.2 - - arathion-ethyl (Parathion) ma/kq 0.2 - - - ormophos Ethyl ma/kq 0.2 - - - - thion ma/kq 0.2 - - - -	20	-	NA	<0.1	NA	<0.1	<0.1	NA
iazinon (Dimyvlate) mq/kq 0.5 - enitrothion mq/kq 0.2 - - alathion mq/kq 0.2 - - - hlorpyrifos (Chlorpyrifos Ethyl) mq/kq 0.2 160 34 arathion-ethyl (Parathion) mq/kq 0.2 - - romophos Ethyl mg/kq 0.2 - - thion mg/kq 0.2 - -		-	NA	<0.5	NA	<0.5	<0.5	NA
enitrothion mg/kg 0.2 - talathion mg/kg 0.2 - - holorytrifos Chlorpyrifos Ethyl) mg/kg 0.2 160 34 arathion-ethyl (Parathion) mg/kg 0.2 - - romophos Ethyl mg/kg 0.2 - - lethidathion mg/kg 0.5 - - thion mg/kg 0.2 - -	-	-	NA NA	<0.5 <0.5	NA NA	<0.5 <0.5	<0.5 <0.5	NA
http://tigs.childpartifies.Ethyl) mg/kg 0.2 160 33 arathionethyl (Parathion) mg/kg 0.2 -	-	-	NA NA	<0.2 <0.2	NA NA	<0.2 <0.2	<0.2 <0.2	NA NA
iromophos Ethyl mg/kg 0.2 - dethidathion mg/kg 0.5 - - thion mg/kg 0.2 - -		-	NA NA	<0.2 <0.2	NA NA	<0.2 <0.2	<0.2 <0.2	NA NA
thion mg/kg 0.2	-	-	NA NA	<0.2 <0.5	NA NA	<0.2 <0.5	<0.2 <0.5	NA NA
		-	NA NA	<0.2 <0.2	NA NA	<0.2 <0.2	<0.2 <0.2	NA
CBs mg/kg 0.2 - rochlor 1016 mg/kg 0.2 - -			NA	<0.2	NA	<0.2	<0.2	NA
Indiana Indiana 0.2 -			NA NA NA	<0.2 <0.2 <0.2	NA NA NA	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NA NA NA
rochlor 1242 mg/kg 0.2		-	NA NA NA	<0.2 <0.2 <0.2	NA NA NA	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NA NA NA
rochlor 1254 mg/kg 0.2 -		-	NA	<0.2 <0.2 <0.2	NA NA NA	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	NA NA NA
rochlor 1262			NA NA	<0.2	NA	<0.2	<0.2	NA
rochlor 1268 mg/kg 0.2	- 1	-	NA NA	<0.2	NA NA	<0.2 <1	<0.2 <1	NA NA
letals rsenic mg/kg 3 100 50		100	5	7	<3	3	5	6
admium mg/kg 0.3 20 15 hromium mg/kg 0.3 100 50	300	- 570	<0.3 9.2	0.4	0.5	<0.3 20	<0.3 87	<0.3 37
opper mg/kg 0.5 6,000 300 ead mg/kg 1 300 12	D 600	280 1100	6.9 12	13 69	69 7	14 14	6.7 69	6.9 66
tercury mg/kg 0.01 40 12 lickel mg/kg 0.5 400 12	80	- 350	<0.05 2.9	0.07	<0.05 220	<0.05 13	0.09 3.8	0.08
inc ma/ka 0.5 7.400 600 \sbestos		880	27	340	95	29	77	120
sbestos Detected - Fibre Identification in soil No unit 0 No Detected No De Stimated Fibres - Fibre Identification in soil %w/w 0.01 0.01 0.01 0.01		-	NA NA	No <0.01	NA	No <0.01	No <0.01	NA
Subsidia Detected - Fibre ID in bulk materials (cement fragment) No unit 0 No Detected No Detected OTES: If concentrations are in mg/kg Table 1A(1), HIL Column 1 - Health Based Investigation Levels for Residential with Garden/Accessible Soil - NEHF A (NEF - Table 1A(1), HIL Column 2 - Health Based Investigation Levels for Residential with minimal opportunities for soil access - N - Table 1A(1), HIL Column 3 - Health Based Investigation Levels for Residential with minimal opportunities for soil access - N - Table 1A(1), HIL Column 3 - Health Based Investigation Levels for Residential with minimal opportunities for soil access - N - Table 1A(1), HIL Column 3 - Health Based Investigation Levels for (Recreational) Public Open Space such as parks, playre - Table 1A(1), HILC Olumn 3 - Health Based Investigation Levels for (Recreational) Public Open Space such as parks, playre - Table 1A(1), HILC Olumn 3 - Health Based Investigation Levels for (Recreational) Public Open Space Such as parks, playre - Table 1A(1), HILC Olumn 5 - Health Based Investigation Levels for (Recreational) Public Open Space Such as parks, playre - Table 1A(1), HILC Olumn 5 - Health Based Investigation Levels for (Recreational) Public Open Space Such as parks, playre - Table 1A(1), HILC Olumn 5 - Health Based Investigation Levels for (Recreational) Public Open Space Such as parks, playre - Table 1A(1), HILC Olumn 5 - Health Based Investigation Levels for (Recreational) Public Open Space Such as parks, playre - Table 1A(1), HILC Olumn 5 - Health Based Investigation Levels for (Recreational) Public Open Space NEHC C, 2013)		-	NA	NA	NA	NA	NA	NA


Laboratory ID							SE173782.016	SE173782.017	SE173782.018	SE173782.019	SE173782.020	SE173782.021
Sample ID							S9	\$10	SH1	SH2	SH3	SH4
Depth (m)							0.0 - 0.2	0.0 - 0.2	0.0 - 0.2	0.0 - 0.2	0.0 - 0.2	0.0 - 0.2
Soil Type							Fill: Sand & Gravel	Fill: Clay & Sand	Fill: Sand & Gravel	Fill: Sand & Gravel	Fill: Clay & Sand	Fill: Clay & Sand
Date Sampled			1				14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
					VI 2013							
Compounds	Unit	EQL	Residential HIL A ¹	Residential HIL B ³	Recreational HIL C ³	Urban Residential and Public Open Space - EIL ⁴						
TRHs TRH C6-C9	mg/kg	20	-	-	-	-	<20	<20	<20	<20	<20	<20
TRH C6-C10 TPH C6-C10 less BTEX (F1)	mg/kg mg/kg	25 25	- 45 ²	- 45 ²	-	- 180	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
TRH C10-C14	mg/kg	20	-	<u> </u>	-	-	<20	<20	<20	<20	<20	<20
TRH C15-C28 TRH C29-C36	ma/ka ma/ka	45 45	-		-	-	<45 <45	<45 <45	<45 <45	<45 <45	<45 <45	<45 <45
TRH C37-C40	mg/kg	100	-	-	-	-	<100 <25	<100 <25	<100 <25	<100 <25	<100 <25	<100 <25
TRH >C10-C16 TRH >C10-C16 less Naphthalene (F2)	ma/ka mg/kg	25 25	- 110 ²	 110 ²	-	120	<25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3) TRH >C34-C40 (F4)	mg/kg	90	-		-	300 2800	<90 <120	<90 <120	<90 <120	<90 <120	<90 <120	<90 <120
TRH >C10-C36	mg/kg mg/kg	120 110	-	-	-	-	<110	<110	<110	<110	<110	<110
TRH >C10-C40 BTEX	ma/ka	210	-		-	-	<210	<210	<210	<210	<210	<210
Benzene	mg/kg	0.1	0.5 ²	0.5 ²	-	50	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	55 ²	55 ²	-	70 85	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Toluene Xylene (m & p)	mg/kg mg/kg	0.1	160 ²	160 ⁻²	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Xylene (o) Xylene Total	mg/kg	0.1	- 40 ²	- 40 ²	-	- 105	<0.1 <0.3	<0.1 <0.3	<0.1 <0.3	<0.1 <0.3	<0.1 <0.3	<0.1 <0.3
PAHs	mg/kg	0.3	40	40	-	105	<0.0	6.U2	<0.3	<0.0	50.0	<0.0
Naphthalene	mg/kg	0.1	3 ²	3 ²	•	170	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene 1-methylnaphthalene	mg/kg mg/kg	0.1	-		-	-	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1
Acenaphthylene	mg/kg	0.1	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene Fluorene	mg/kg mg/kg	0.1	-		-	-	<0.1	< <u>0.1</u> <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1
Phenanthrene	mg/kg	0.1	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	0.1
Anthracene Fluoranthene	ma/ka ma/ka	0.1	-		-	-	<0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1
Pyrene	mg/kg	0.1	-		-	-	<0.1	<0.1 <0.1	<0.1 <0.1	0.2	<0.1 <0.1	<0.1 <0.1
Benzo(a)anthracene Chrysene	ma/ka ma/ka	0.1	-		-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&i)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg	0.1	-		-	-	<0.1	0.1	<0.1 <0.1	0.2 <0.1	<0.1 <0.1	<0.1 <0.1
Benzo(a)pyrene	mg/kg	0.1	-	-	-	0.7	<0.1	<0.1	<0.1	0.2	<0.1	<0.1
Indeno(1,2,3-cd)pyrene Dibenzo(a&h)anthracene	ma/ka ma/ka	0.1	-		-	-	<0.1	<0.1 <0.1	<0.1 <0.1	<u>0.2</u> <0.1	<0.1 <0.1	<0.1 <0.1
Benzo(ghi)perylene	mg/kg	0.1	-	-	-	-	<0.1	<0.1	<0.1	0.1	<0.1	<0.1
Carcinogenic PAHs (as BaP TEQ)-assume results <lor=0 Carcinogenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""><td>TEQ TEQ (mg/kg)</td><td>0.2</td><td>3</td><td>4 4</td><td>3</td><td>-</td><td><0.2 <0.3</td><td><0.2 <0.3</td><td><0.2 <0.3</td><td>0.2</td><td><0.2</td><td><0.2 <0.3</td></lor=lor<></lor=0 	TEQ TEQ (mg/kg)	0.2	3	4 4	3	-	<0.2 <0.3	<0.2 <0.3	<0.2 <0.3	0.2	<0.2	<0.2 <0.3
Carcinogenic PAHs (as BaP TEQ)-assume results <lor=lor 2<="" td=""><td>TEQ (mq/kg)</td><td></td><td>3</td><td>4</td><td>3</td><td>-</td><td><0.2 <0.8</td><td><0.2</td><td><0.2</td><td>0.3</td><td><0.2 <0.8</td><td><0.2 <0.8</td></lor=lor>	TEQ (mq/kg)		3	4	3	-	<0.2 <0.8	<0.2	<0.2	0.3	<0.2 <0.8	<0.2 <0.8
PAHs (Sum of total) OCPs	ma/ka		300	400	300	-	<0.8	<0.8	<0.8	1.3	<0.8	<0.8
Hexachlorobenzene (HCB)	mg/kg	0.1	10	15	10	-	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Lindane Heptachlor	ma/ka ma/ka	0.1	- 6	- <u>-</u> 10	- 10	-	<0.1	NA NA	<0.1	<0.1	<0.1	<0.1 <0.1
Aldrin	mg/kg	0.1	6	10	10	-	<0.1 <0.1	NA NA	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Dieldrin Alpha BHC	ma/ka ma/ka	0.1	-	-	-	-	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Beta BHC Delta BHC	mg/kg mg/kg	0.1	-			-	<0.1	NA NA	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Heptachlor epoxide	mg/kg	0.1	-		-	-	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan Beta Endosulfan	mg/kg mg/kg	0.2	270	400	340	-	<0.2	NA NA	<0.2 <0.1	<0.2 <0.1	<0.2	<0.2 <0.1
Endosulfan sulphate	mg/kg	0.1				-	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Gamma Chlordane Alpha Chlordane	ma/ka ma/ka	0.1	50	90	70	-	<0.1	NA NA	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1
trans-Nonachlor	mg/kg	0.2	-	-	-	-	<0.2	NA	<0.2	<0.2	<0.2	<0.2
ρ,ρ'-DDT ρ,ρ'-DDE	ma/ka ma/ka	0.2	240	600	400	180	<0.2 <0.1	NA NA	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1
<u>p,p'-DDD</u> o,p'-DDT	mg/kg	0.1					<0.1 <0.2	NA NA	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2	<0.1 <0.2
o,p'-DDE	mg/kg mg/kg	0.1	240	600	400	180	<0.1	NA	<0.1	<0.1	<0.1	<0.1
o,p'-DDD Endrin	mg/kg mg/kg	0.1	10	20	20	-	<0.1	NA NA	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Endrin Aldehyde	mg/kg	0.1	-	-	-	-	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Methoxychlor Endrin Ketone	mg/kg mg/kg	0.1	300	<u>500</u> -	400	-	<0.1	NA NA	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1
Isodrin	mg/kg	0.1	-	-	-	-	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Mirex OPPs	ma/ka	0.1	10	20	20	-	<0.1	NA	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	0.5	•	· ·	-	-	< 0.5	NA	<0.5	<0.5	<0.5	<0.5
Dimethoate Diazinon (Dimpylate)	ma/ka ma/ka	0.5	-		-	-	<0.5	NA NA	<0.5	<0.5	<0.5 <0.5	<0.5 <0.5
Fenitrothion Malathion	mg/kg	0.2	-		-	-	<0.2 <0.2	NA NA	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg mg/kg	0.2	160	340	250	-	<0.2	NA	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion) Bromophos Ethyl	mg/kg mg/kg	0.2	-		-	-	<0.2	NA NA	<0.2	<0.2 <0.2	<0.2	<0.2 <0.2
Methidathion	mg/kg	0.5	-	-	-	-	<0.5	NA	<0.5	<0.5	< 0.5	<0.5
Ethion Azinphos-methyl (Guthion)	ma/ka ma/ka	0.2	-		-	-	<0.2	NA NA	<0.2	<0.2 <0.2	<0.2	<0.2 <0.2
PCBs												
Arochlor 1016 Arochlor 1221	mg/kg mg/kg	0.2	-		-	-	<0.2	NA NA	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	-	-	-	-	<0.2	NA	<0.2	<0.2	<0.2	<0.2
Arochlor 1242 Arochlor 1248	ma/ka ma/ka	0.2	-		-	-	<0.2	NA NA	<0.2	<0.2 <0.2	<0.2	<0.2 <0.2
Arochlor 1254	mg/kg	0.2	-	-	-	-	<0.2 <0.2	NA NA	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2
Arochlor 1260 Arochlor 1262	mg/kg mg/kg	0.2	-		-	-	<0.2	NA	<0.2	<0.2	<0.2	<0.2
Arochlor 1268 Total PCBs (Arochlors)	mg/kg ma/ka	0.2	- 1	- 1	- 1	-	<0.2	NA NA	<0.2	<0.2	<0.2	<0.2
Metals	- mu/Ku											
Arsenic	mg/kg	3	100	500	300	100	12	12	9	77	17	<3
Cadmium Chromium	mg/kg mg/kg	0.3	20 100	150 500	90 300	570	1 110	1.1 81	0.6	0.4 21	1.6 160	<0.3 76
Copper Lead	mg/kg mg/kg	0.5	6,000 300	<u>30000</u> 1200	17000 600	280 1100	26 230	35 350	23 230	58 82	51 680	19 10
Mercury	mg/kg	0.01	40	120	80	-	0.24	0.1	0.09	0.08	0.25	< 0.05
Nickel Zinc	mg/kg ma/ka	0.5	400 7.400	1200 60000	1200 30000	350 880	4.5 490	8.4 510	35 440	11 830	28 460	66 44
Asbestos		. 0.0										
Asbestos Detected - Fibre Identification in soil	No unit	0	No Detected	No Detected	No Detected	-	No <0.01	NA NA	No <0.01	No <0.01	No <0.01	No <0.01
Estimated Fibres - Fibre Identification in soil Asbestos Detected - Fibre ID in bulk materials (cement fragment)	%w/w No unit	0.01	0.01 No Detected	0.04 No Detected	0.02 No Detected	-	<0.01 NA	NA NA	<0.01 NA	<0.01 NA	<0.01 NA	<0.01 NA

NoTES:
All concentrations are in mg/kg
1 - Table 14(1), HLL Column 1 - Health Based Investigation Levels for Residential with Garden/Accessible Soil - NEHF A (NEPC, 2013)
2 - Table 14(1), HLL Column 1 - Health Based Investigation Levels for Residential with Garden/Accessible Soil - NEHF A (NEPC, 2013)
3 - Table 14(1), HLL Column 2 - Health Based Investigation Levels for Residential with minimal opportunities for soil access - NEHF B (NEPC, 2013)
4 - Table 14(1), HLL Column 3 - Health Based Investigation Levels for (Recreational) Public Open Space such as parks, playgrounds, playing fields - NEHF C (NEPC, 2013)
5 - Tables 18(1), 1B(2), 1B(2), 1B(4), 1B(4), 1B(5) and 1B(6), ELLs and ESLs - Urban Residential/Public Open Space (NEPC, 2013)
EQL - laboratory Estimated Quantitation Limit
** indicates that the criteria is not applicable for these analytes
< Value = Concentration less than laboratory EQL
40

Laboratory ID							SE173824.001	SE173824.002	SE173824.003	SE173782.024	SE173782.025	SE173782.026
Sample ID Depth (m)							BH7/0.2-0.3	BH8/0.2-0.3	BH9/0.2-0.3 0.2 - 0.3	BH10/0.2-0.3 0.2 - 0.3	BH11/0.2-0.3 0.2 - 0.3	BH12/0.2-0.3
Soil Type							Fill: Clay & Sand	Fill: Clay & Sand	Fill: Clay & Sand	Fill: Clay & Sand	Fill: Clay & Sand	Fill: Clay & Sand
Date Sampled							15/12/2017	15/12/2017	15/12/2017	14/12/2017	14/12/2017	14/12/2017
			Residential	NEPN Residential	A 2013 Recreational	Urban						
Compounds	Unit	EQL	HIL A ¹	HIL B ³	HIL C ³	Residential and Public Open Space - EIL ⁴						
TRHs TRH C6-C9	mg/kg	20	-	-	-		<20	<20	<20	<20	<20	<20
TRH C6-C10 TPH C6-C10 less BTEX (F1)	mg/kg mg/kg	25 25	- 45 ²	- 45 ²	-	- 180	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25	<25 <25
TRH C10-C14 TRH C15-C28	mg/kg mg/kg	20 45			-		<20 <45	<20 <45	<20 <45	<20 <45	<20 <45	<20 <45
TRH C29-C36 TRH C37-C40	mg/kg mg/kg	45		-	-		<45 <100	<45	60 <100	<45	<45 <100	<45 <100
TRH >C10-C16 TRH >C10-C16 less Naphthalene (F2)	mg/kg mg/kg	25 25	110 ²	- 110 ²		- 120 300	<25 <25 <90	<25 <25 <90	<25 <25 91	<25 <25 <90	<25 <25 <90	<25 <25 <90
TRH >C16-C34 (F3) TRH >C34-C40 (F4) TRH >C10-C36	mg/kg mg/kg mg/kg	90 120 110				2800	<90 <120 <110	<90 <120 <110	<120 <110	<90 <120 <110	<90 <120 <110	<90 <120 <110
TRH >C10-C40 BTEX	ma/ka	210	-	-	-	-	<210	<210	<210	<210	<210	<210
Benzene Ethylbenzene	mg/kg mg/kg	0.1	0.5 ² 55 ²	0.5 ² 55 ²	-	50 70	<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Zulene Xylene (m & p)	mg/kg mg/kg	0.1	160 ²	160 ²	-	85	<0.1 <0.2	<0.1 <0.2	<0.1	<0.1 <0.2	<0.1	<0.1 <0.2
Xylene (o) Xylene Total	mg/kg mg/kg	0.2		- - 40 ²		- - 105	<0.2 <0.1 <0.3	<0.2 <0.1 <0.3	<0.2 <0.1 <0.3	<0.2	<0.2	<0.2
PAHs												
Naphthalene 2-methylnaphthalene	mg/kg mg/kg	0.1	3 ²	3 ²		170 -	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
1-methylnaphthalene Acenaphthylene Acenaphthene	ma/ka ma/ka	0.1 0.1 0.1					<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg mg/kg	0.1					<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Anthracene Fluoranthene	mg/kg mg/kg	0.1					<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Pyrene Benzo(a)anthracene	mg/kg mg/kg	0.1	-	-	-	- -	<0.1 <0.1	<0.1 <0.1	0.2	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Benzo(b&i)fluoranthene	mg/kg mg/kg	0.1	-	-	-	- -	<0.1 <0.1	<0.1 <0.1	0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg	0.1	-	-	-	- 0.7	<u><0.1</u> <0.1	<0.1 <0.1	0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Indeno(1,2,3-cd)pyrene Dibenzo(a&h)anthracene	mg/kg mg/kg	0.1			-		<0.1	<0.1 <0.1	0.1 <0.1	<0.1	<0.1	<0.1
Benzo(ghi)pervlene Carcinogenic PAHs (as BaP TEQ)-assume results <lor=0< td=""><td>mg/kg TEQ</td><td>0.1</td><td>- 3</td><td>- 4</td><td>- 3</td><td>-</td><td><0.1</td><td><0.1 <0.2</td><td>0.1</td><td><0.1</td><td><0.1 <0.2</td><td><0.1 <0.2</td></lor=0<>	mg/kg TEQ	0.1	- 3	- 4	- 3	-	<0.1	<0.1 <0.2	0.1	<0.1	<0.1 <0.2	<0.1 <0.2
Carcinogenic PAHs (as BaP TEQ)-assume results <lor=lor Carcinogenic PAHs (as BaP TEQ)-assume results <lor=lor 2<="" td=""><td>TEQ (mg/kg) TEQ (mg/kg)</td><td>0.3</td><td>3 3 300</td><td>4 4 400</td><td>3 3 300</td><td></td><td><0.3 <0.2 <0.8</td><td><0.3 <0.2 <0.8</td><td>0.3 0.3 1.5</td><td><0.3 <0.2 <0.8</td><td><0.3 <0.2 <0.8</td><td><0.3 <0.2 <0.8</td></lor=lor></lor=lor 	TEQ (mg/kg) TEQ (mg/kg)	0.3	3 3 300	4 4 400	3 3 300		<0.3 <0.2 <0.8	<0.3 <0.2 <0.8	0.3 0.3 1.5	<0.3 <0.2 <0.8	<0.3 <0.2 <0.8	<0.3 <0.2 <0.8
PAHs (Sum of total) OCPs UPD 1000000000000000000000000000000000000	ma/ka											
Hexachlorobenzene (HCB) Lindane Hostocklor	mg/kg mg/kg	0.1 0.1 0.1	10 - 6	15 -	10 - 10		<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1
Heptachlor Aldrin Dieldrin	mg/kg mg/kg mg/kg	0.1	6	10 10	10		<0.1 <0.1 <0.1	<0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1
Alpha BHC Beta BHC	mg/kg mg/kg	0.1	-	-	-		<0.1 <0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <0.1
Delta BHC Heptachlor epoxide	mg/kg mg/kg	0.1	-	-	-		<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1	<0.1
Alpha Endosulfan Beta Endosulfan	mg/kg mg/kg	0.2	270	400	340	-	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1	<0.2 <0.1
Endosulfan sulphate Gamma Chlordane	mg/kg mg/kg	0.1	50	90	70	-	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Alpha Chlordane trans-Nonachlor	mg/kg mg/kg	0.1		-	-		<0.1	<0.1 <0.2	<0.1 <0.2	<0.1	<0.1 <0.2	<0.1 <0.2
p.p'-DDT p.p'-DDE	mg/kg mg/kg	0.2	240	600	400	180	<0.2	<0.2 <0.1	<0.2 <0.1	<0.2	<0.2	<0.2
p,p-DDD o,p-DDT	mg/kg mg/kg	0.1 0.2 0.1	240	600	400	180	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1	<0.1 <0.2 <0.1
o.p'-DDE o.p'-DDD Endrin	mg/kg mg/kg mg/kg	0.1	10	20	20	-	<0.1 <0.1 <0.1	<0.1 <0.1	<0.1 <0.1	<0.1	<0.1	<0.1 <0.1 <0.1
Endrin Aldehyde Methoxychlor	mg/kg mg/kg	0.1	- 300	- 500	- 400		<0.1 <0.1	<0.1	<0.1	<0.1	<0.1 <0.1	<0.1 <0.1
Endrin Ketone Isodrin	mg/kg mg/kg	0.1	-		-		<0.1 <0.1	<0.1	<0.1 <0.1	<0.1	<0.1 <0.1	<0.1
Mirex OPPs	ma/ka	0.1	10	20	20	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos Dimethoate	mg/kg mg/kg	0.5	-		-		<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Diazinon (Dimpylate) Fenitrothion	mg/kg mg/kg	0.5	-	-	-	-	<0.5 <0.2	<0.5 <0.2	<0.5 <0.2	<0.5 <0.2	<0.5 <0.2	<0.5 <0.2
Malathion Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg mg/kg	0.2	- 160	- 340	- 250	-	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2 <0.2	<0.2
Parathion-ethyl (Parathion) Bromophos Ethyl Mathidathian	mg/kg mg/kg	0.2	-	-	-		<0.2 <0.2 <0.5	<0.2 <0.2 <0.5	<0.2 <0.2 <0.5	<0.2 <0.2 <0.5	<0.2 <0.2 <0.5	<0.2 <0.2 <0.5
Methidathion Ethion Azinphos-methyl (Guthion)	mg/kg mg/kg	0.5 0.2 0.2		- - -	-		<0.2	<0.5 <0.2 <0.2	<0.5 <0.2 <0.2	<0.5 <0.2 <0.2	<0.5 <0.2 <0.2	<0.5 <0.2 <0.2
PCBs	ma/ka			-	-							
Arochlor 1016 Arochlor 1221 Arochlor 1322	ma/ka ma/ka	0.2 0.2 0.2		-	-		<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2
Arochlor 1232 Arochlor 1242 Arochlor 1248	mg/kg mg/kg mg/kg	0.2			-		<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2	<0.2 <0.2 <0.2
Arochlor 1254 Arochlor 1254	mg/kg mg/kg	0.2	- -	-	-		<0.2 <0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0.2 <0.2
Arochlor 1262 Arochlor 1262	mg/kg mg/kg	0.2	-	-	-		<0.2 <0.2 <0.2	<0.2	<0.2	<0.2	<0.2	<0.2 <0.2 <0.2
Total PCBs (Arochlors) Metals	ma/ka	1	1	1	1	-	<1	<1	<1	<1	<1	<1
Arsenic Cadmium	mg/kg mg/kg	3 0.3	100 20	<u>500</u> 150	<u>300</u> 90	<u>100</u> -	7 <0.3	4 <0.3	10 0.4	4 <0.3	5 <0.3	5 <0.3
Chromium Copper	mg/kg mg/kg	0.3 0.5	100 6,000	500 30000	300 17000	570 280	28 12	2 160	47 31	5.2 3.3	8 3.9	9.2 4.3
Lead Mercury	mg/kg mg/kg	1 0.01	300 40	1200 120	600 80	<u>1100</u> -	13 <0.05	4 <0.05	50 0.06	8 <0.05	5 <0.05	7 <0.05
Nickel Zinc	ma/ka ma/ka	0.5	400 7.400	1200 60000	1200 30000	350 880	3.4 97	3.7 24	10 100	1 26	1.4 41	6.9 30
Asbestos Asbestos Detected - Fibre Identification in soil	No unit	0	No Detected	No Detected		-	NA	NA	NA	NA	NA	NA
Estimated Fibres - Fibre Identification in soil Asbestos Detected - Fibre ID in bulk materials (cement fragment) NOTES:	%w/w No unit	0.01	0.01 No Detected	0.04 No Detected	0.02		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
All concentrations are in mg/kg 1 - Table 1A(1), HIL Column 1 - Health Based Investigation Levels f 2 - Table 1A(3), HSL A & HSL B Column 1 (Sand 0 m to <1 m) - Soi 3 - Table 1A(1), HIL Column 2 - Health Based Investigation Levels f 4 - Table 1A(1), HIL Column 3 - Health Based Investigation Levels f 5 - Tables 1B(1), HB(2), HS(4), HS(5), HS(5) and HS(6), EILs and ES EQL - laboratory Estimated Quantitation Limit ** indicates that the criteria is not applicable for these analytes < Value = Concentration less than laboratory EQL	I HSLs for Vapour or Residential with or (Recreational) F	r Intrusion fo n minimal op Public Oper	or Low – High Dens oportunities for soil : I Space such as pa	ity Residential - NE access - NEHF B (rks, playgrounds, pl	HF B (NEPC, 2013) NEPC, 2013)							

Laboratory ID Sample ID Depth (m)							SE173782.022 PACM1 0.2 - 0.3	SE173782.023 PACM2 0.0
Soil Type							0.2 - 0.3 Bonded Fibr	1
Date Sampled							13/12/2017	14/12/2017
				NEPA	A 2013		13/12/2017	14/12/2017
Compounds	Unit	EQL	Residential HIL A ¹	Residential HIL B ³	Recreational HIL C ³	Urban Residential and Public Open Space - EIL ⁴		
IRHs IRH C6-C9		00					NIA	NIA
RH C6-C9 RH C6-C10	ma/ka ma/ka	20 25			-	-	NA NA	NA NA
TPH C6-C10 less BTEX (F1)	mg/kg	25 20	45 ²	45 ²	-	180	NA NA	NA NA
RH C10-C14 RH C15-C28	ma/ka ma/ka	45	-	-	-		NA	NA
RH C29-C36 RH C37-C40	ma/ka ma/ka	45 100	-	-	-		NA NA	NA NA
RH >C10-C16	mg/kg	25	-	-	-	-	NA	NA
RH >C10-C16 less Naphthalene (F2) RH >C16-C34 (F3)	mg/kg mg/kg	25 90	110 ²	110 ² -	-	120 300	NA	NA NA
RH >C34-C40 (F4)	mg/kg	120	-	-	-	2800	NA	NA
RH >C10-C36 RH >C10-C40	ma/ka ma/ka	110 210	-	-	-		NA NA	NA NA
TEX								
enzene thylbenzene	mg/kg mg/kg	0.1	0.5 ² 55 ²	0.5 ² 55 ²		50 70	NA	NA NA
oluene	mg/kg	0.1	160 ²	160 ²		85	NA	NA
ylene (m & p) ylene (o)	mg/kg mg/kg	0.2	-	-	-		NA NA	NA NA
ylene Total	mg/kg	0.1	40 ²	40 ²	-	105	NA	NA
AHs			- 2	2		470	NIA	61.6
aphthalene methylnaphthalene	mg/kg mg/kg	0.1	3 ²	3 ²	-	170 -	NA	NA NA
-methylnaphthalene	mg/kg	0.1	-	-	-	-	NA	NA
cenaphthylene	ma/ka ma/ka	0.1	-		-	-	NA NA	NA NA
uorene	mg/kg	0.1	-	-	-	-	NA	NA
henanthrene	ma/ka ma/ka	0.1	-	-	-	-	NA NA	NA
uoranthene	mg/kg	0.1	-	-			NA	NA
vrene enzo(a)anthracene	ma/ka ma/ka	0.1	-		-	-	NA NA	NA NA
hrysene enzo(b&i)fluoranthene	ma/ka ma/ka	0.1	-	-			NA NA	NA NA
enzo(k)fluoranthene	mg/kg	0.1	-	-	-	-	NA	NA
enzo(a)pyrene deno(1,2,3-cd)pyrene	ma/ka ma/ka	0.1	-		-	0.7	NA	NA NA
benzo(a&h)anthracene	mg/kg	0.1	-	-	-	-	NA	NA
enzo(ghi)pervlene arcinogenic PAHs (as BaP TEQ)-assume results <lor=0< td=""><td>ma/ka TEQ</td><td>0.1</td><td>- 3</td><td>- 4</td><td>- 3</td><td></td><td>NA NA</td><td>NA NA</td></lor=0<>	ma/ka TEQ	0.1	- 3	- 4	- 3		NA NA	NA NA
arcinogenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3</td><td>4</td><td>3</td><td>-</td><td>NA</td><td>NA</td></lor=lor<>	TEQ (mg/kg)	0.3	3	4	3	-	NA	NA
arcinogenic PAHs (as BaP TEQ)-assume results <lor=lor 2<br="">AHs (Sum of total)</lor=lor>	TEQ (ma/ka) ma/ka	0.2	3 300	4 400	3 300	-	NA NA	NA NA
CPs								
exachlorobenzene (HCB) indane	ma/ka ma/ka	0.1	<u> </u>	<u>15</u>	10		NA NA	NA NA
eptachlor	mg/kg	0.1	6	10	10	· · ·	NA	NA
ldrin ieldrin	ma/ka ma/ka	0.1	6	10	10		NA NA	NA NA
lpha BHC	mg/kg	0.1	-	-	-		NA NA	NA NA
eta BHC	ma/ka ma/ka	0.1	-	-	-	-	NA	NA
eptachlor epoxide	mg/kg	0.1	-	-	-	-	NA	NA
lpha Endosulfan eta Endosulfan	ma/ka ma/ka	0.2	270	400	340		NA NA	NA NA
ndosulfan sulphateamma Chlordane	ma/ka ma/ka	0.1					NA NA	NA NA
lpha Chlordane	mg/kg	0.1	50	90	70	-	NA	NA
ans-Nonachlor	ma/ka ma/ka	0.2	-	-			NA NA	NA NA
p'-DDE	mg/kg	0.1	240	600	400	180	NA	NA
.p'-DDD .p'-DDT	ma/ka ma/ka	0.1					NA NA	NA NA
p'-DDE	mg/kg	0.1	240	600	400	180	NA NA	NA NA
p'-DDD ndrin	ma/ka ma/ka	0.1	10	20	20	-	NA	NA
ndrin Aldehyde et to the second se	mg/kg	0.1	- 300	- 500	- 400	-	NA NA	NA NA
ndrin Ketone	ma/ka ma/ka	0.1	-	-	-		NA	NA
odrin rex	ma/ka ma/ka	0.1	- 10	- 20	- 20		NA NA	NA NA
PPs								
chlorvos methoate	mg/kg mg/kg	0.5	-	-	-	•	NA NA	NA
azinon (Dimpylate)	mg/kg	0.5	-	-	-	-	NA	NA
alathion	ma/ka ma/ka	0.2	-	-	-		NA NA	NA
hlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	160	340	250	-	NA	NA
arathion-ethyl (Parathion) omophos Ethyl	ma/ka ma/ka	0.2	-		-	-	NA NA	NA NA
ethidathion	mg/kg	0.5	-		-	•	NA	NA
hion zinohos-methvl (Guthion)	ma/ka ma/ka	0.2			-		NA NA	NA NA
CBs		-					NIA	h l A
ochlor 1016 ochlor 1221	ma/ka ma/ka	0.2	-		-	-	NA NA	NA NA
ochlor 1232	mg/kg	0.2	-	-	-	•	NA NA	NA NA
rochlor 1242 rochlor 1248	ma/ka ma/ka	0.2	-	-	-		NA	NA
rochlor 1254 rochlor 1260	ma/ka ma/ka	0.2	-	-	-		NA NA	NA NA
rochlor 1262	mg/kg	0.2	-	-	-	-	NA	NA
rochlor 1268 otal PCBs (Arochlors)	ma/ka ma/ka	0.2	- 1	- 1	- 1		NA NA	NA
letals								
rsenic admium	mg/kg mg/kg	3 0.3	100 20	500 150	300 90	100	NA NA	NA
hromium	mg/kg	0.3	100	500	300	570	NA	NA
opper ead	mg/kg mg/kg	0.5	6,000 300	30000 1200	17000 600	280 1100	NA NA	NA NA
ercury	mg/kg	0.01	40	120	80	-	NA	NA
ickel	ma/ka ma/ka	0.5	400 7.400	1200 60000	1200 30000	350 880	NA NA	NA NA
sbestos			1.400					
sbestos Detected - Fibre Identification in soil stimated Fibres - Fibre Identification in soil	No unit	0.01	No Detected	No Detected	No Detected		NA NA	NA NA
SUMALEY FIDLES - FIDLE IVENUICATION IN SOIL	%w/w No unit	0.01	0.01 No Detected	0.04 No Detected	0.02 No Detected	-	Yes	Yes

NOTES:

All concentrations are in mg/kg
1 Table 14(1), HLC column 1 - Health Based Investigation Levels for Residential with Garden/Accessible Soil - NEHF A (NEPC, 2013)
2 - Table 14(1), HLC column 1 - Health Based Investigation Levels for Residential with Garden/Accessible Soil - NEHF A (NEPC, 2013)
3 - Table 14(1), HLC column 2 - Health Based Investigation Levels for Residential with minimal opportunities for soil access - NEHF B (NEPC, 2013)
4 - Table 14(1), HLC column 3 - Health Based Investigation Levels for Residential with minimal opportunities for soil access - NEHF B (NEPC, 2013)
5 - Table 14(1), HLC column 3 - Health Based Investigation Levels for (Recreational) Public Open Space such as parks, playgrounds, playing fields - NEHF C (NEPC, 2013)
5 - Tables 18(1), 18(2), 18(3), 18(4), 18(5) and 18(6), ELLs and ESLs - Urban Residential/Public Open Space (NEPC, 2013)
EQL - laboratory Estimated Quantitation Limit
** indicates that the criteria is not applicable for these analytes
< Value = Concentration less than laboratory EQL

Table B - Soil RPD Values

Sample Location			S 1			S1			S8	
Sample ID		S1	QC1A		S1	QC1B		S8	QC2A	
· · · · · · · · · · · · · · · · · · ·			(Duplicate of S1)	RPD		(Triplicate of S1)	RPD		(Duplicate of S8)	RPD
Depth (mBGS)			-0.2 /2017			0.0-0.2			.0-0.2 12/2017	
Date Sampled Compounds	EQL/PQL							1		
BTEX										
Benzene	0.1	<0.1	<0.1	NA	<0.1	<0.2	NA	<0.1	<0.1	NA
Ethylbenzene Toluene	0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.5	NA NA	<0.1 <0.1	<0.1 <0.1	NA NA
Xylene (m & p)	0.2	<0.2	<0.2	NA	<0.2	<0.5	NA	<0.2	<0.2	NA
Xylene (o) TPHs	0.1	<0.1	<0.1	NA	<0.1	<0.5	NA	<0.1	<0.1	NA
TRH C6-C9	20	<20	<20	NA	<20	<10	NA	<20	<20	NA
TRH C6-C10	25	<25	<25	NA	<25	<10	NA	<25	<25	NA
TPH C6-C10 less BTEX (F1) TRH C10-C14	25 20	<25 <20	<25 <20	NA NA	<25 <20	<10 <50	NA NA	<25 <20	<25 <20	NA NA
TRH C15-C28	45	<45	<45	NA	<45	<100	NA	<45	<45	NA
TRH C29-C36 TRH C37-C40	45 100	<45 <100	<45 <100	NA NA	<45 <100	<100 NA	NA NA	<45 <100	<45 <100	NA NA
TRH >C10-C16 (F2)	25	<25	<25	NA	<25	<50	NA	<25	<25	NA
TRH >C10-C16 less Naphthalene (F2) TRH >C16-C34	25 90	<25 <90	<25 <90	NA NA	<25 <90	<50	NA NA	<25 <90	<25 <90	NA NA
TRH >C16-C34 TRH >C34-C40	120	<90	<120	NA	<120	<100 <100	NA	<120	<120	NA
TRH >C10-C36	110	<110	<110	NA	<110	<50	NA	<110	<110	NA
TRH >C10-C40 PAHs	210	<210	<210	NA	<210	<50	NA	<210	<210	NA
Naphthalene	0.1	<0.1	<0.1	NA	<0.1	<0.5	NA	<0.1	<0.1	NA
2-methylnaphthalene 1-methylnaphthalene	0.1 0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.5	NA NA	<0.1 <0.1	<0.1	NA NA
Acenaphthylene	0.1	<0.1	<0.1	NA	<0.1	<0.5 <0.5	NA	<0.1	<0.1	NA
Acenaphthene	0.1	<0.1	<0.1	NA	<0.1	<0.5	NA	<0.1	<0.1	NA
Fluorene Phenanthrene	0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.5	NA NA	<0.1 <0.1	<0.1	NA NA
Anthracene	0.1	<0.1	<0.1	NA	<0.1	<0.5	NA	<0.1	<0.1	NA
Fluoranthene Pyrene	0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.5 <0.5	NA NA	<0.1 <0.1	<0.1	NA NA
Benzo(a)anthracene	0.1	<0.1	<0.1	NA	<0.1	<0.5	NA	<0.1	<0.1	NA
Chrysene Benzo(b&j)fluoranthene	0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.5	NA NA	<0.1 <0.1	<0.1	NA NA
Benzo(k)fluoranthene	0.1	<0.1	<0.1	NA	<0.1	<0.5	NA	<0.1	<0.1	NA
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.5	NA NA	<0.1 <0.1	<0.1	NA NA
Dibenzo(a&h)anthracene	0.1	<0.1	<0.1	NA	<0.1	<0.5	NA	<0.1	<0.1	NA
Benzo(ghi)perylene Carcinogenic PAHs (as BaP TEQ)-assume results <lor=0< td=""><th>0.1</th><td><0.1 <0.2</td><td><0.1 <0.2</td><td>NA NA</td><td><0.1 <0.2</td><td><0.5</td><td>NA NA</td><td><0.1 <0.2</td><td><0.1 <0.2</td><td>NA NA</td></lor=0<>	0.1	<0.1 <0.2	<0.1 <0.2	NA NA	<0.1 <0.2	<0.5	NA NA	<0.1 <0.2	<0.1 <0.2	NA NA
Carcinogenic PAHs (as BaP TEQ)-assume results <lor=lor< td=""><th>0.05</th><td><0.2</td><td><0.2</td><td>NA</td><td><0.2</td><td><0.5 0.6</td><td>NA</td><td><0.2</td><td><0.2</td><td>NA</td></lor=lor<>	0.05	<0.2	<0.2	NA	<0.2	<0.5 0.6	NA	<0.2	<0.2	NA
Carcinogenic PAHs (as BaP TEQ)-assume results <lor=lor 2<="" td=""><th>0.1</th><td><0.2 <0.8</td><td><0.2 <0.8</td><td>NA</td><td><0.2</td><td>1.2</td><td>NA</td><td><0.2 <0.8</td><td><0.2</td><td>NA</td></lor=lor>	0.1	<0.2 <0.8	<0.2 <0.8	NA	<0.2	1.2	NA	<0.2 <0.8	<0.2	NA
PAHs (Sum of total) OCPs	0.1	<0.8	<0.8	NA	<0.8	<0.5	NA	<0.8	<0.8	NA
Hexachlorobenzene (HCB)	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA	<0.1	<0.1	NA
Alpha BHC Lindane	0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1	NA NA	<0.1 <0.1	<0.1	NA NA
Heptachlor	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA	<0.1	<0.1	NA
Aldrin Beta BHC	0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1	NA NA	<0.1 <0.1	<0.1	NA NA
Delta BHC	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA	<0.1	<0.1	NA
Heptachlor epoxide o.p'-DDE	0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1	NA NA	<0.1	<0.1	NA NA
Apha Endosulfan	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA	<0.2	<0.2	NA
Gamma Chlordane Alpha Chlordane	0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1	NA NA	<0.1 <0.1	<0.1	NA NA
trans-Nonachlor	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA	<0.1	<0.1	NA
p,p'-DDE Dieldrin	0.1	<0.1 <0.2	<0.1 <0.2	NA NA	<0.1 <0.2	<0.1	NA NA	<0.1 <0.2	<0.1	NA NA
Endrin	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA	<0.2	<0.2	NA
o,p'-DDD o,p'-DDT	0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1	NA NA	<0.1 <0.1	<0.1	NA NA
Beta Endosulfan	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA	<0.2	<0.1	NA
p,p'-DDD	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA	<0.1	<0.1	NA
p,p'-DDT Endosulfan sulphate	0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1	NA NA	<0.1 <0.1	<0.1	NA NA
Endrin Aldehyde	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA	<0.1	<0.1	NA
Methoxychlor Endrin Ketone	0.1	<0.1 <0.1	<0.1 <0.1	NA NA	<0.1 <0.1	<0.1	NA NA	<0.1 <0.1	<0.1	NA NA
Isodrin	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA	<0.1	<0.1	NA
Mirex OPPs	0.1	<0.1	<0.1	NA	<0.1	<0.1	NA	<0.1	<0.1	NA
Dichlorvos	0.5	<0.5	<0.5	NA	<0.5	<0.5	NA	<0.5	<0.5	NA
Dimethoate Diazinon (Dimpylate)	0.5	<0.5 <0.5	<0.5 <0.5	NA NA	<0.5 <0.5	<0.5 <0.5	NA NA	<0.5 <0.5	<0.5	NA NA
Fenitrothion	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA	<0.2	<0.2	NA
Malathion Chlorpyrifos (Chlorpyrifos Ethyl)	0.2	<0.2 <0.2	<0.2 <0.2	NA NA	<0.2 <0.2	<0.2 <0.2	NA NA	<0.2 <0.2	<0.2	NA NA
Parathion-ethyl (Parathion)	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA	<0.2	<0.2	NA
Bromophos Ethyl Methidathion	0.2 0.5	<0.2 <0.5	<0.2 <0.5	NA NA	<0.2 <0.5	<0.2 <0.5	NA NA	<0.2 <0.5	<0.2 <0.5	NA NA
Ethion	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA	<0.2	<0.2	NA
Azinphos-methyl (Guthion)	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA	<0.2	<0.2	NA
PCBs Arochlor 1016	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA	<0.2	<0.2	NA
Arochlor 1221	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA	<0.2	<0.2	NA
Arochlor 1232 Arochlor 1242	0.2	<0.2 <0.2	<0.2 <0.2	NA NA	<0.2	<0.2	NA NA	<0.2 <0.2	<0.2	NA NA
Arochlor 1248	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA	<0.2	<0.2	NA
Arochlor 1254 Arochlor 1260	0.2	<0.2 <0.2	<0.2 <0.2	NA NA	<0.2	<0.2	NA NA	<0.2 <0.2	<0.2	NA NA
Arochlor 1262	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA	<0.2	<0.2	NA
Arochlor 1268	0.2	<0.2	<0.2	NA	<0.2	<0.2	NA	<0.2	<0.2	NA
Metals Arsenic	3	20	18	11%	20	16	22%	5	6	18%
Cadmium	0.3	0.8	0.7	13%	0.8	<0.1	NA	<0.3	<0.3	NA
Chromium Copper	0.3 0.5	16 28	15 28	6% 0%	16 28	16 27	0% 4%	87 6.7	37 6.9	81% 3%
Lead	1	73	63	15%	73	64	13%	69	66	4%
Mercury Nickel	0.0	0.1 8.3	0.09 8.4	11% 1%	0.1	0.1	0% 8%	0.09 3.8	0.08	12% 0%
Zinc	0.5	150	180	18%	150	152	1%	77	120	44%

NOTES: Al concentrations are in mg/kg RPDs have only been considered where a concentration is greater than 5 times the EQL.

RPD result exceeding acceptance criteria for organics - 50% inorganics - 30% RPD results exceeding the acceptance criteria but were disregarded if primary or duplicate sample results were <5 x EQL Reference: Australian Standard, Guide to the Investigation and Sampling of Potentially Contaminated Soil (AS4482.1-2005 and AS4482.2-1999) ## - Primary lab EQL/Secondary lab EQL "-" indicates that these samples were not analysed NA - Calculation not applicable or RPD=0 Intra Dup - Intra-laboratory duplicate sample Inter Dup - Inter-laboratory duplicate sample

Table C - Calculation of 95%UCL (in accordance with Sampling	Design Guidelines, NSW E	PA, September 1995)	
Method based on Central Limit Theorem (Procedure D in Guidelines)	30	30	30
N, number of datapoints Average of dataset	102.4	36.7	75.7
Standard deviation of dataset	65.7	37.2	139.0
Student t test value at p=0.05	1.70	1.70	1.70
5%UCL - Based on Central Limit Theorem (default)	122.7	48.2	118.8
Method for data with Log-Normal distribution (used only when coefficient of			
Coefficient of variation (critical value 1.2): Shapiro-Wilk test, data likely to be normal (p=0.05)?	0.64	1.01	1.84
Shapiro-Wilk test, data likely to be log-normal (p=0.05)?			
Maximum concentration	450	160	680
Is result realistic? (95%UCL < 1.2 x maximum)	Yes	Yes	Yes
Use 95%UCL based on log-normal distribution?	No	No	
5%UCL - Based on Log-Normal distribution	109.9	62.8	144.0
05%UCL for dataset	122.7	48.2	#DIV/0
Sample ID		Compound (mg/kg)	
		Otherseiters	
TP1/0.5-1.0	TRH C16-C34 less BTEX (F3) <90	Chromium 42	Lead 21
TP2/0.3-1.0		42 20	31
TP2/0.3-1.0 TP3/0.2-0.3	450	13	19
TP3/0.2-0.3 TP4/0.2-0.3	430 <90	15	12
TP4/0.2-0.3 TP5/0.2-0.3		4	40
TP5/0.2-0.3 TP6/0.2-0.3		4 46	40 14
			14
TP7/0.2-0.3	<90	15	
S1	<90	16	73
QC1A OC1P	<90	15	63
QC1B	<100	16	64
S2	<90	18	ç
S3	<90	26	10
S4	<90	9	12
S5	<90	58	69
S6	<90	11	7
S7	<90	20	14
S8	<90	87	69
QC2A	<90	37	66
S9	<90	110	230
S10	<90	81	350
SH1	<90	85	230
SH2	<90	21	82
SH3	<90	160	680
SH4	<90	76	10
BH7/0.2-0.3	<90	28	13
BH8/0.2-0.3	<90	2	4
BH9/0.2-0.3	91	47	50
BH10/0.2-0.3		5	8
BH11/0.2-0.3	<90	8	5
BH12/0.2-0.3	<90	9	7
		-	

Appendix A – Proposed Development Plans

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

3.0 Proposal

3.1 Proposed development

The proposed development involves the restoration of the historic Heathcote Hall including identified historical curtilage, gardens and landscaping in accordance with the submitted Conservation Management Plan (CMP). The proposal also nominates the demolition of redundant existing structures and vegetation which are identified on the demolition plan submitted with this application.

The included CMP also identifies the constraints and opportunities for areas of development that will not undermine the historical significance of Heathcote Hall. The CMP has defined an area which is suitable for redevelopment which permits the opportunity to provide townhouses, apartments and basement parking to offset the funding required to fully undertake the restoration of the state significant historical Heathcote Hall. The development application proposes (post demolition works - refer attached plan) and as detailed in the architectural plans prepared by Ink Architects;

Heritage Precinct

- 1. Restoration of Heathcote Hall Building
- 2. Renew turf and reinstate pleasure gardens
- **3**. Reinstate pathways
- 4. Support landscaping regeneration area
- 5. Introduce a Community kitchen gardens and orchard

Development Precinct

- 1. 36 Town Houses at 2 storeys
- 2. 3 storey building A 15 units
- 3. 2 storey building B 6 units
- 4. Basement car parking accessed from Boronia Grove and Dillwynnia Grove
- 5. Landscaping
- 6. Associated earthworks

3.2 Landscaping

A detailed Landscape Plan prepared by Site Design has been submitted with the application. The Landscape Plan outlines the design treatment for private and communal landscaped areas of the site. The proposal includes new vegetation throughout the site including planting adjacent to the common driveway and increased perimeter planting to complement and soften the proposed built form. Existing site and street trees, including those to be retained, removed and relocated are indicated on the Landscape Plan. The Landscape Plan should be read in conjunction with the Arborist Report prepared by Ross Jackson Nature Works.

3.3 Parking, Access & Public Transport

The proposed development will provide a total of 134 car parking spaces, with storage areas, and visitor spaces and additional 7 motorcycle parking spaces. Access to the new development precinct is via the proposed driveways from Boronia Grove, Tacoma Street and Dillwynnia Grove.

The site is located within walking distance to bus stops and Heathcote railway station providing public transport to Sydney CBD, Wollongong and Cronulla. Transdev provides the bus service for route 996 which is the Engadine to Heathcote East (loop service).

Figure 4 -Masterplan

Page 6 of 18

Appendix B – Data Validation

B1 Introduction

The following sections describe the components of the Quality Assurance and Quality Control Plan that assess the achievement of the DQOs set out in **Section 5** by consideration of the data quality indicators – DQIs (precision, accuracy, reproducibility, completeness and comparability).

B2 Data Quality Indicators

The project DQIs have been established to set acceptance limits on field and laboratory data collected as part of these DESI works. For both field and laboratory procedures, acceptance limits are set at different levels for different projects and by the laboratories.

Non-compliances with acceptance limits are to be documented and discussed in the report. The DQIs are as follows:

DQI	Field	Laboratory	Acceptability Limits
Precision	Sampling methodologies appropriate and complied with. Collection of intra-laboratory duplicate and inter-laboratory duplicate samples	Analysis of: Field intra-laboratory duplicate samples (1 in 10 samples) Field inter-laboratory duplicate samples (1 in 20 samples) Laboratory duplicate samples	RPD of < 50% RPD of < 50% RPD of < 50%
Accuracy	Sampling methodologies appropriate and complied with. Collection of rinsate blanks	Laboratory prepared trip spikes Analysis of: Rinsate blanks (1/day/equipment) Method blanks Matrix spikes Matrix spike duplicates Laboratory control samples Surrogate spikes Reference Materials	Recovery >90% Non-detect for CoC Non-detect for CoC 70 to 130% RPD of <50% 70 to 130 % 70 to 130% Varies

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

DQI	Field	Laboratory	Acceptability Limits
Representativeness	Appropriate media sampled according to LG methodologies All media identified in the methodology section sampled.	All samples analysed according to LG discretion and based on Section 2.2 of this report.	All samples analysed according to the LG and laboratory methodologies.
Comparability	Same sampling methodologies used on each day of sampling Experienced sampler Climatic conditions Same types of samples collected	Same analytical methods used (including clean-up) Sample laboratory detection limits (justify/quantify if different) Same laboratories (NATA accredited) Same units	As per NEPC (1999c) < nominated criteria where applicable
Completeness	All critical locations and media sampled All samples collected Sampling methodologies appropriate and complied with Experienced sampler Documentation correct	All critical samples analysed and all analytes analysed according to the methodology section. Appropriate methods Appropriate laboratory detection limits Sample documentation complete Sample holding times complied with	As per NEPC (1999c) < nominated criteria where applicable As per NEPC (1999b)

An assessment of field and laboratory QA/QC data and clarification of the degree to which each of these aspects above was met is provided in **Section F5**.

B3 Field QA/QC

B3.2 Sample Collection

B3.2.1 Soil Samples

During the test pitting soil boring works, samples were generally collected from the fill materials between 0.0 to 1.5 m bgs and from natural soils between 0.5 to 1.5 m bgs. At least one sample was collected from each borehole location from the fill materials and one sample from the natural soils.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

Test pitting through the fill materials and into natural soil materials was completed using a 13 tonne excavator. Soil samples were collected directly from the gouge auger tube using a hand protected by a nitrile glove and placed immediately into a laboratory prepared 125 mL glass jar.

Where sufficient material allowed, additional materials were placed into a sealed plastic bag and left for five minutes for the vapours to equilibrate. The bag was then screened with a calibrated photo-ionisation detector (PID) to give an indication of the level of volatile organic compounds (VOCs) within the materials sampled. PID readings were taken from each sample as well as from areas that produced an odour during drilling.

Field intra-laboratory duplicates of the soil were prepared in the field by collecting separate samples from the gauge auger tubes from the same depth. A duplicate of the soil sample was prepared in the field by splitting the sample. Samples were not mixed or homogenised during collection or splitting. The sample for duplicate analysis was selected from a sampling location showing high probability of containing contaminants of concern, i.e., samples characterised by potentially contaminating activities, odours and/or elevated PID responses.

B3.3 Sample Handling and Preservation

During sampling, a new pair of disposable nitrile sampling gloves was donned between each sampling location and depth. Samples were placed immediately into a laboratory prepared and supplied container in accordance with the methodology described in **Section B3.2** above.

Soil and groundwater samples were placed in a chilled, insulated container with ice between sampling and analysis.

Sample numbers, depths, preservation and analytical requirements were recorded on the chain-of-custody documentation (signed copies provided with the laboratory reports in **Appendix C**), which accompanied the samples to the laboratory.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

B3.4 Calibration

<u> PID</u>

During the field investigation, calibration of the photoionisation detector (PID) was undertaken in accordance with manufacturer's instructions. The PID was calibrated prior to delivery by the supplier (Airmet Scientific) and calibration was undertaken at the start of each sampling day by LG. All calibration results were satisfactory.

F3.5 Intra-laboratory and Inter-laboratory Replicate Samples

The purpose of field replicate samples is to estimate the variability of a given characteristic or contaminant associated with a population. Intra-laboratory and interlaboratory replicate samples were collected and analysed at a rate of at least one (1) in twenty (20) primary samples.

The actual intra-laboratory replicate and inter-laboratory replicate sample frequency was as follows:

- Soil:
 - Two (2) duplicate (intra-laboratory replicate) samples (for 27 primary samples), meeting the 5% sampling rate requirement in AS 4482. All were analysed for 8 metals, TRH, and BTEX, PAH, PCB and OCP/OPP to match the primary sample analytical suite. Duplicate analysis for asbestos was not conducted and LG considered it acceptable due to discrete nature of ACM impacts.
 - One (1) triplicate (inter-laboratory replicate) sample (for 27 primary samples), meeting the 5% sampling rate requirement in AS 4482. All were analysed for metals with selected pairs analysed for 8 metals, TRH, BTEX. PAH, PCB and OCP/OPP to match the primary sample analytical suite were not analysed in the duplicate samples. Duplicate analysis for asbestos was not conducted and LG considered it acceptable due to discrete nature of ACM impacts.
 - No trip blank or trip spike samples were analysed as LG considered that volatile contaminants were not a primary concern.

Field replicated soil samples were obtained from similar matrix of an identical depth and immediately adjacent to the primary sample by placing approximately equal portions of the primary sample into two sample containers. The replicate samples were labelled to conceal their relationship to the primary sample from the laboratory and the key to the replicate samples were recorded in the field note book.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

It is common that significant variation in replicate results is often observed (particularly for solid matrix samples) due to sample heterogeneity or low reported concentrations near the EQL. The overall precision of field replicates, laboratory split samples and laboratory duplicates is generally assessed by their Relative Percent Difference (RPD), given by:

$$RPD = \frac{(D1 - D2)}{\frac{(D1 + D2)}{2}} X \, 100$$

where D1 is the primary sample measurement

D2 is the replicate sample measurement

It is expected that RPD's would be less than 50% for organic compounds and less than 30% for inorganic compounds, and if not, liaison with the laboratory will be undertaken and samples will be reanalysed, if required. A summary of the calculations for RPDs for soils are presented in **Table B**.

It is noted that there were the following exceedances relative to the RPD criteria and these RPD exceedances are likely due to heterogeneity of the fill materials sampled:

• S8 and QC2A (duplicate) – chromium and zinc.

B3.6 Decontamination and Rinsate Blanks

B3.6.1 Soil Sampling

During test pitting and soil bore sampling works, the excavator bucket and drilling equipment was re-used. The excavator bucket was decontaminated by hand between each sampling location by scrubbing with an aqueous solution of Decon 90 followed by a rinse in potable water. The augers were sprayed with an aqueous solution of Decon 90 followed by a rinse in potable water. Given that samples were collected directly from the dedicated push tube using single-use gloves and no-reuseable sampling equipment came into contact with the soil sampled minimal rinsate blanks were considered necessary during the soil investigation works.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

B4 Laboratory QA/QC

B4.1 Analytical Laboratory

Samples were submitted to the SGS, Alexandria, NSW (primary laboratory) and ALS, Smithfield, NSW (secondary laboratory).

SGS and ALS are NATA-accredited laboratories and their analytical procedures are based on established internationally-recognised procedures such as those published by the US EPA, APHA, AS and NEPM (2013).

SGS and ALS analytical procedures are based on methods referenced from published sources including the US EPA APHA, AS and NEPM (2013).

B4.2 Analytical Methods

The laboratory analysis methods are provided on the laboratory certificates in **Appendix C** and summarised below:

Analysis		SGS and ALS Laboratories
	Standard Estimated Quantitation Limit	Reference Method
TRHs	25-100 mg/kg	Extraction with DCM/Acetone or MeOH then PT- GC/FID or GC/MS (USEPA 3510, 8015)
BTEX	0.2-2 mg/kg	Methanolic extraction then PT-GC/MS (USEPA 5030, 8260)
PAHs OCPs OPPs PCBs	0.05-0.2 mg/kg	Extraction with DCM/Acetone then GC/MS (USEPA 3510, 8270)
Metals	0.5-4 mg/kg	ICP/AES (USEPA 6020)
Asbestos	0.2-2 mg/kg	ASB-001 - Asbestos ID - Qualitative identification of

Soil Analytical Method:

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

Analysis		SGS and ALS Laboratories
	Standard Estimated Quantitation Limit	Reference Method
		asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004

Note:

DCM= Dichloromethane

GC= Gas Chromatography

MS = Mass Spectrometry

ICP = Inductively Coupled Plasma

FI = Flame Injection

B4.3 Laboratory (Method) Blanks

Laboratory or control blanks consist of reagents specific to each individual analytical method and are prepared and analysed by laboratories in the same manner as regular samples. The preparation and analysis of laboratory blanks enables the measurement of contamination within the laboratory.

Laboratory blanks are typically analysed at a frequency of 1 in 10, with a minimum of one analysed per batch.

Review of laboratory QA/QC reports indicated that the results for all method blanks for both soil and groundwater were below the laboratory EQLs.

B4.4 Laboratory Duplicates

Laboratory duplicate samples are prepared in the laboratory by splitting a field sample and analysing it as two independent samples. The analysis of laboratory duplicate samples provides an indication of analytical precision and may be influenced by sample heterogeneity. The laboratory duplicate RPDs are used to assess laboratory precision.

Laboratory duplicates are typically analysed at a frequency of 1 in 10, with a minimum of one analysed per batch.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

B4.5 Laboratory Control Samples

Laboratory control samples (LCS) or Quality Control check samples are prepared within the laboratory by spiking an aliquot of an appropriate clean matrix reagent with known concentrations of specific analytes. The LCS sample is then analysed and the results are used to assess the laboratory performance on sample preparation and analysis procedure. Certified reference material may also be used to assess analytical accuracy independent of the investigations. Accuracy is assessed by calculation of percent recovery.

LCSs are typically analysed at a frequency of 1 in 20, with a minimum of one analysed per analytical batch.

Reviews of the laboratory QA/QC reports indicated that the percent recoveries for laboratory control samples ranged from 70% to 137% which are within the acceptance criteria.

B4.6 Matrix Spikes

Matrix spikes are samples prepared within the laboratory by dividing a field sample into two aliquots, then spiking each with identical concentrations of the analytes. The matrix spike and matrix spike duplicate are then analysed separately and the results compared to determine the effects of the sample matrix on the accuracy and precision of the analytes.

Accuracy is assessed by the calculation of the percent recovery.

B4.7 Surrogates

Surrogates are compounds which are similar to the organic analytes of interest in chemical composition, extraction, and chromatographic behaviour, but which are not normally found in field samples.

Surrogates are generally spiked into all sample aliquots prior to preparation and analysis by chromatogaphic methods.

Percent recoveries are calculated for each surrogate, providing an indication of analytical accuracy. US EPA methodology (SW – 846) requires that surrogate testing be performed whenever analysing by Gas Chromatography or HPLC.

Review of the laboratory QA/QC reports indicated that the percent recoveries for surrogates for soil ranged from 72% to 128% which are within the acceptance criteria for organic compounds for the laboratory.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

B4.8 Holding Times

NEPC (1999), APHA 20th Edition and AS2031.1-1986 present recommended holding times for various analyses (under specified conditions, for example below 4°C in an airtight container), which must be met in order to consider the results valid. The holding times may vary slightly depending on the document referenced.

The standard holding times for the analysis undertaken for this investigation is set out in the table below.

Analyte	Matrix	Recommended Maximum Holding Time	Compliance
TRH	Soil	14 days	Υ
BTEX	Soil	14 days	Υ
PAHs	Soil	14 days	Y
Metals	Soil	6 months	Υ
Mercury	Soil	28 days	Υ

Review of the chain-of-custody documentation and the laboratory reports indicated that for the initial batches of analysis for soil, the holding times met the standard holding times set out in the table above for all analytes tested.

B5 Data Validation

The overall assessment of the quality of the data obtained during this investigation is discussed below in terms of the data quality indicators provided above.

Non-compliances have been documented and discussed in the report. The DQIs are as follows:

DQI	Description	Compliance
ц	Precision is a quantitative measure of the variability (or reproducibility) of data.	Precision or variability of the data was assessed by determining RPDs between the original and duplicate samples analysed.
Precision		Based on results discussed above, LG considers that the precision of the data is sufficient for the purposes of this investigation.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

DQI	Description	Compliance
Ś	Accuracy is a quantitative measure of the closeness of	Accuracy of the data was mainly assessed through review of the laboratory QA/QC results.
Accuracy	reported data to the true value.	From the laboratory QA/QC results, LG considers that the accuracy of the data is sufficient for the purposes of this investigation.
	Representativeness is the confidence (expressed qualitatively) that data are representative of each media present on the site.	Representativeness expresses the degree to which sample data accurately and precisely represent a characteristic of parameter variations at sampling points or environmental conditions. Sample representativeness is controlled through selecting sampling locations that exemplify site conditions and obtaining suitable samples from these sites.
Representativeness		Sample selection and analysis was conducted in order to meet the specific objectives of the project. Analysis for the contaminants of concern was selectively conducted on samples collected as indicated in analytical tables.
Represen		Based on the sampling and analytical regime undertaken by LG, the results obtained are considered to be sufficiently representative of the subsurface conditions at the locations tested.
SS	Completeness is a measure of the amount of usable data (expressed as %) from a data collection activity.	The completeness of data is defined as the percentage of analytical results that are considered valid. Valid chemical data are values that have been identified as acceptable or acceptable as qualified during the data validation process. The completeness is a comparison of the total number of samples accepted against the total number of samples, calculated as a percentage. The project goal for completeness is 95%. Completeness also includes checking that all entries in the data tables are correct, properly entered, and that any typographical errors are corrected and the data are re-entered properly, as required.
Completeness		Some of the samples collected and analysed did not comply with the stated DQIs. However, the data that did comply with the DQOs and DQIs, is considered to be sufficiently quantitative and complete for the purposes of this investigation (i.e. >95%)

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

DQI	Description	Compliance
Comparability	Comparability is the confidence (expressed qualitatively) that data may be considered to be equivalent for each sampling and analytical event.	Comparability expresses the confidence with which one data set can be compared with another. In order to assess comparability, field sampling procedures, laboratory sample preparation procedures, analytical procedures, and reporting units must be known and similar to established protocols, as was the case during this investigation. Qualitatively, data subjected to strict QA/QC procedures will be deemed more reliable, and therefore more comparable, than other data. Each analyte was analysed by the same analytical laboratory using identical methods, and laboratory EQLs were consistent over each laboratory batch. Additionally, a check laboratory was used to assess variability between laboratories.
Com		Based on the above, the data obtained throughout the investigation is considered to be suitably comparable.

LG notes that the deviations from standard data quality requirements are a result of the nature of the sampled materials and do not reflect adversely on the sampling methods adopted. Interpretation of the results should acknowledge potentially increased variability in the data and values close to guideline criteria should be treated with caution. No such results were identified in this assessment and LG considers that the laboratory data quality is acceptable for the identification and delineation of impact at the site.

Based on the assessment of field and laboratory QA/QC data, LG considers that the reported field and analytical results are of a quality that can be relied upon for the purposes of the investigation works.

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

Appendix C – Laboratory Reports

LAND & GROUNDWATER CONSULTING PTY LTD

LG17100_01 DESI 04-01-18

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DE	TAILS
Contact Client Address	Gonzalo Parra LAND AND GROUNDWATER CONSULTING PTY LTD 131 B Riverview Road NSW 2204	Manager Laboratory Address	Huong Crawford SGS Alexandria Environmental Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95598424	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	gparra@lgconsult.com.au	Email	au.environmental.sydney@sgs.com
Project	LG17100.01 Dillwynnia Grove, Heathcote	SGS Reference	SE173782 R0
Order Number	LGC141106060	Date Received	14/12/2017
Samples	28	Date Reported	21/12/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

A portion of the sample supplied has been sub-sampled for asbestos due to large sample volume according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environment, Health and Safety recommends supplying approximately 50-100g of sample in a separate container.

Sample #5: Asbestos found as approx 20x10x2mm cement sheet fragment.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES

Akheeqar Beniameen Chemist

kinter

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

MPage f140 69 200 Page 1 of 26

SE173782 R0

VOC's in Soil [AN433] Tested: 18/12/2017

			TP1/0.5-1.0	TP2/0.3-1.0	TP3/0.2-0.3	TP4/0.2-0.3	TP5/0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 13/12/2017	- 13/12/2017	- 13/12/2017	- 13/12/2017	- 13/12/2017
PARAMETER	UOM	LOR	SE173782.001	SE173782.002	SE173782.003	SE173782.004	SE173782.005
PANAMETER	001	LOK	3E173782.001	3E173782.002	3E173782.003	3E173782.004	3E173782.005
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			TP6/0.2-0.3	TP7/0.2-0.3	S1	S2	S3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/12/2017	13/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.006	SE173782.007	SE173782.008	SE173782.009	SE173782.010
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			S4	S5	S6	S 7	S8
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 14/12/2017 SE173782.011	- 14/12/2017 SE173782.012	- 14/12/2017 SE173782.013	- 14/12/2017 SE173782.014	- 14/12/2017 SE173782.015
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			S9	S10	SH1	SH2	SH3
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 14/12/2017 SE173782.016	- 14/12/2017 SE173782.017	- 14/12/2017 SE173782.018	- 14/12/2017 SE173782.019	- 14/12/2017 SE173782.020
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

ANALYTICAL RESULTS

SE173782 R0

VOC's in Soil [AN433] Tested: 18/12/2017 (continued)

			SH4	BH10/0.2-0.3	BH11/0.2-0.3	BH12/0.2-0.3	QC1A
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	14/12/2017 SE173782.021	14/12/2017 SE173782.024	14/12/2017 SE173782.025	14/12/2017 SE173782.026	14/12/2017 SE173782.027
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1

			QC2A
PARAMETER	UOM	LOR	SOIL - 14/12/2017 SE173782.028
Benzene	mg/kg	0.1	<0.1
Toluene	mg/kg	0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2
o-xylene	mg/kg	0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1

SE173782 R0

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 18/12/2017

			TP1/0.5-1.0	TP2/0.3-1.0	TP3/0.2-0.3	TP4/0.2-0.3	TP5/0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
PARAMETER	UOM	LOR	SE173782.001	SE173782.002	SE173782.003	SE173782.004	SE173782.005
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			TP6/0.2-0.3	TP7/0.2-0.3	S1	\$2	S3
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/12/2017	13/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.006	SE173782.007	SE173782.008	SE173782.009	SE173782.010
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			S4	S5	S6	S7	S8
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.011	SE173782.012	SE173782.013	SE173782.014	SE173782.015
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			S9	S10	SH1	SH2	SH3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.016	SE173782.017	SE173782.018	SE173782.019	SE173782.020
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			SH4	BH10/0.2-0.3	BH11/0.2-0.3	BH12/0.2-0.3	QC1A
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.021	SE173782.024	SE173782.025	SE173782.026	SE173782.027
TRH C6-C9	mg/kg	20	<20	<20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25	<25	<25

			QC2A
			SOIL
			14/12/2017
PARAMETER	UOM	LOR	SE173782.028
TRH C6-C9	mg/kg	20	<20
Benzene (F0)	mg/kg	0.1	<0.1
TRH C6-C10	mg/kg	25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 15/12/2017

			TP1/0.5-1.0	TP2/0.3-1.0	TP3/0.2-0.3	TP4/0.2-0.3	TP5/0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
PARAMETER	UOM	LOR	SE173782.001	SE173782.002	SE173782.003	SE173782.004	SE173782.005
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	290	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	280	63	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	68	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	68	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	450	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	570	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	520	<210	<210

			TP6/0.2-0.3	TP7/0.2-0.3	S1	S2	S3
PARAMETER	UOM	LOR	SOIL - 13/12/2017 SE173782.006	SOIL - 13/12/2017 SE173782.007	SOIL - 14/12/2017 SE173782.008	SOIL - 14/12/2017 SE173782.009	SOIL - 14/12/2017 SE173782.010
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			S4	S5	S6	S7	S8
PARAMETER	UOM	LOR	SOIL - 14/12/2017 SE173782.011	SOIL - 14/12/2017 SE173782.012	SOIL - 14/12/2017 SE173782.013	SOIL - 14/12/2017 SE173782.014	SOIL - 14/12/2017 SE173782.015
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 15/12/2017 (continued)

			S9	S10	SH1	SH2	SH3
			SOIL	SOIL	SOIL	SOIL	SOIL
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.016	SE173782.017	SE173782.018	SE173782.019	SE173782.020
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			SH4	BH10/0.2-0.3	BH11/0.2-0.3	BH12/0.2-0.3	QC1A
PARAMETER	UOM	LOR	SOIL - 14/12/2017 SE173782.021	SOIL - 14/12/2017 SE173782.024	SOIL - 14/12/2017 SE173782.025	SOIL - 14/12/2017 SE173782.026	SOIL - 14/12/2017 SE173782.027
TRH C10-C14	mg/kg	20	<20	<20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	<45	<45	<45
TRH C37-C40	mg/kg	100	<100	<100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	<90	<90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210	<210	<210

			QC2A SOIL - 14/12/2017
PARAMETER	UOM	LOR	SE173782.028
TRH C10-C14	mg/kg	20	<20
TRH C15-C28	mg/kg	45	<45
TRH C29-C36	mg/kg	45	<45
TRH C37-C40	mg/kg	100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90
TRH >C34-C40 (F4)	mg/kg	120	<120
TRH C10-C36 Total	mg/kg	110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/12/2017

			TP1/0.5-1.0	TP2/0.3-1.0	TP3/0.2-0.3	TP4/0.2-0.3	TP5/0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
PARAMETER	UOM	LOR	SE173782.001	SE173782.002	SE173782.003	SE173782.004	SE173782.005
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.1	0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			TP6/0.2-0.3	TP7/0.2-0.3	S1	\$2	S3
					0.01	0.011	
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/12/2017	13/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.006	SE173782.007	SE173782.008	SE173782.009	SE173782.010
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/12/2017 (continued)

			S4	S5	S6	S7	S8
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.011	SE173782.012	SE173782.013	SE173782.014	SE173782.015
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.1	<0.1	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			S9	S10	SH1	SH2	SH3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 3012	- 3012	- 3012	- SOIL	- 3012
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.016	SE173782.017	SE173782.018	SE173782.019	SE173782.020
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	0.1	<0.1	0.2	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	0.2	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td>0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td>0.3</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	0.3	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	1.3	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	1.3	<0.8

ANALYTICAL RESULTS

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 15/12/2017 (continued)

			SH4	BH10/0.2-0.3	BH11/0.2-0.3	BH12/0.2-0.3	QC1A
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.021	SE173782.024	SE173782.025	SE173782.026	SE173782.027
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	<0.8	<0.8	<0.8

			QC2A
			001
			SOIL
			14/12/2017
PARAMETER	UOM	LOR	SE173782.028
Naphthalene	mg/kg	0.1	<0.1
2-methylnaphthalene	mg/kg	0.1	<0.1
1-methylnaphthalene	mg/kg	0.1	<0.1
Acenaphthylene	mg/kg	0.1	<0.1
Acenaphthene	mg/kg	0.1	<0.1
Fluorene	mg/kg	0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1
Anthracene	mg/kg	0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1
Pyrene	mg/kg	0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1
Chrysene	mg/kg	0.1	<0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2
Total PAH (18)	mg/kg	0.8	<0.8
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8

OC Pesticides in Soil [AN420] Tested: 15/12/2017

			TP1/0.5-1.0	TP2/0.3-1.0	TP3/0.2-0.3	TP4/0.2-0.3	TP5/0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 5012	- 5012	- 5012	- 5012	- 5012
			13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
PARAMETER	UOM	LOR	SE173782.001	SE173782.002	SE173782.003	SE173782.004	SE173782.005
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

			TP6/0.2-0.3	TP7/0.2-0.3	S1	S3	S5
			SOIL - 13/12/2017	SOIL - 13/12/2017	SOIL - 14/12/2017	SOIL - 14/12/2017	SOIL - 14/12/2017
PARAMETER	UOM	LOR	SE173782.006	SE173782.007	SE173782.008	SE173782.010	SE173782.012
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

			S7	S8	S9	SH1	SH2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.014	SE173782.015	SE173782.016	SE173782.018	SE173782.019
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

			SH3	SH4	BH10/0.2-0.3	BH11/0.2-0.3	BH12/0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.020	SE173782.021	SE173782.024	SE173782.025	SE173782.026
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1	<1	<1

ANALYTICAL RESULTS

SE173782 R0

			QC1A
			SOIL
			- 14/12/2017
PARAMETER	UOM	LOR	SE173782.027
Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
Alpha BHC	mg/kg	0.1	<0.1
Lindane	mg/kg	0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1
Aldrin	mg/kg	0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2
Endrin	mg/kg	0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1
Isodrin	mg/kg	0.1	<0.1
Mirex	mg/kg	0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1

OP Pesticides in Soil [AN420] Tested: 15/12/2017

			TP1/0.5-1.0	TP2/0.3-1.0	TP3/0.2-0.3	TP4/0.2-0.3	TP5/0.2-0.3
			SOIL - 13/12/2017	SOIL - 13/12/2017	SOIL - 13/12/2017	SOIL - 13/12/2017	SOIL - 13/12/2017
PARAMETER	UOM	LOR	SE173782.001	SE173782.002	SE173782.003	SE173782.004	SE173782.005
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			TP6/0.2-0.3	TP7/0.2-0.3	S1	S3	S5
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	13/12/2017 SE173782.006	13/12/2017 SE173782.007	14/12/2017 SE173782.008	14/12/2017 SE173782.010	14/12/2017 SE173782.012
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			S 7	S8	S9	SH1	SH2
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	14/12/2017 SE173782.014	14/12/2017 SE173782.015	14/12/2017 SE173782.016	14/12/2017 SE173782.018	14/12/2017 SE173782.019
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			SH3	SH4	BH10/0.2-0.3	BH11/0.2-0.3	BH12/0.2-0.3
			SOIL - 14/12/2017	SOIL - 14/12/2017	SOIL - 14/12/2017	SOIL - 14/12/2017	SOIL - 14/12/2017
PARAMETER	UOM	LOR	SE173782.020	SE173782.021	SE173782.024	SE173782.025	SE173782.026
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7	<1.7	<1.7

			QC1A
PARAMETER	UOM	LOR	SOIL - 14/12/2017 SE173782.027
Dichlorvos	mg/kg	0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2
Malathion	mg/kg	0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2
Methidathion	mg/kg	0.5	<0.5
Ethion	mg/kg	0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7

PCBs in Soil [AN420] Tested: 15/12/2017

			TP1/0.5-1.0	TP2/0.3-1.0	TP3/0.2-0.3	TP4/0.2-0.3	TP5/0.2-0.3
			SOIL - 13/12/2017	SOIL - 13/12/2017	SOIL - 13/12/2017	SOIL - 13/12/2017	SOIL - 13/12/2017
PARAMETER	UOM	LOR	SE173782.001	SE173782.002	SE173782.003	SE173782.004	SE173782.005
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			TP6/0.2-0.3	TP7/0.2-0.3	S1	S3	S5
PARAMETER	UOM	LOR	SOIL - 13/12/2017 SE173782.006	SOIL - 13/12/2017 SE173782.007	SOIL - 14/12/2017 SE173782.008	SOIL - 14/12/2017 SE173782.010	SOIL - 14/12/2017 SE173782.012
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			S7	S8	S9	SH1	SH2
PARAMETER	UOM	LOR	SOIL - 14/12/2017 SE173782.014	SOIL - 14/12/2017 SE173782.015	SOIL - 14/12/2017 SE173782.016	SOIL - 14/12/2017 SE173782.018	SOIL - 14/12/2017 SE173782.019
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

PCBs in Soil [AN420] Tested: 15/12/2017 (continued)

			SH3	SH4	BH10/0.2-0.3	BH11/0.2-0.3	BH12/0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.020	SE173782.021	SE173782.024	SE173782.025	SE173782.026
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1	<1	<1

			QC1A
PARAMETER	UOM	LOR	SOIL - 14/12/2017 SE173782.027
Arochlor 1016	mg/kg	0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1

ANALYTICAL RESULTS

SE173782 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 19/12/2017

			TP1/0.5-1.0	TP2/0.3-1.0	TP3/0.2-0.3	TP4/0.2-0.3	TP5/0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
PARAMETER	UOM	LOR	SE173782.001	SE173782.002	SE173782.003	SE173782.004	SE173782.005
Arsenic, As	mg/kg	3	9	7	4	4	5
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	42	20	13	15	4.1
Copper, Cu	mg/kg	0.5	6.0	9.3	7.2	9.8	18
Lead, Pb	mg/kg	1	21	31	19	12	40
Nickel, Ni	mg/kg	0.5	3.5	5.1	2.5	8.0	2.5
Zinc, Zn	mg/kg	0.5	25	150	80	170	44

			TP6/0.2-0.3	TP7/0.2-0.3	S1	S2	S3
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/12/2017	13/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.006	SE173782.007	SE173782.008	SE173782.009	SE173782.010
Arsenic, As	mg/kg	3	6	5	20	5	6
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.8	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	46	15	16	18	26
Copper, Cu	mg/kg	0.5	3.3	2.3	28	3.5	4.9
Lead, Pb	mg/kg	1	14	9	73	9	10
Nickel, Ni	mg/kg	0.5	2.1	1.7	8.3	2.5	1.5
Zinc, Zn	mg/kg	0.5	19	16	150	28	30

			S4	S5	S6	S7	S8
			SOIL	SOIL	SOIL	SOIL	SOIL
			-	-	-	-	-
PARAMETER	UOM	LOR	14/12/2017 SE173782.011	14/12/2017 SE173782.012	14/12/2017 SE173782.013	14/12/2017 SE173782.014	14/12/2017 SE173782.015
Arsenic, As	mg/kg	3	5	7	<3	3	5
Cadmium, Cd	mg/kg	0.3	<0.3	0.4	0.5	<0.3	<0.3
Chromium, Cr	mg/kg	0.3	9.2	58	11	20	87
Copper, Cu	mg/kg	0.5	6.9	13	69	14	6.7
Lead, Pb	mg/kg	1	12	69	7	14	69
Nickel, Ni	mg/kg	0.5	2.9	2.8	220	13	3.8
Zinc, Zn	mg/kg	0.5	27	340	95	29	77

			S9	S10	SH1	SH2	SH3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 14/12/2017	- 14/12/2017	- 14/12/2017	- 14/12/2017	- 14/12/2017
PARAMETER	UOM	LOR	SE173782.016	SE173782.017	SE173782.018	SE173782.019	SE173782.020
Arsenic, As	mg/kg	3	12	12	9	77	17
Cadmium, Cd	mg/kg	0.3	1.0	1.1	0.6	0.4	1.6
Chromium, Cr	mg/kg	0.3	110	81	85	21	160
Copper, Cu	mg/kg	0.5	26	35	23	58	51
Lead, Pb	mg/kg	1	230	350	230	82	680
Nickel, Ni	mg/kg	0.5	4.5	8.4	35	11	28
Zinc, Zn	mg/kg	0.5	490	510	440	830	460

ANALYTICAL RESULTS

SE173782 R0

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 19/12/2017

			SH4	BH10/0.2-0.3	BH11/0.2-0.3	BH12/0.2-0.3	QC1A
			SOIL	SOIL	SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	- 14/12/2017 SE173782.021	- 14/12/2017 SE173782.024	- 14/12/2017 SE173782.025	- 14/12/2017 SE173782.026	- 14/12/2017 SE173782.027
Arsenic, As	mg/kg	3	<3	4	5	5	18
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	<0.3	<0.3	0.7
Chromium, Cr	mg/kg	0.3	76	5.2	8.0	9.2	15
Copper, Cu	mg/kg	0.5	19	3.3	3.9	4.3	28
Lead, Pb	mg/kg	1	10	8	5	7	63
Nickel, Ni	mg/kg	0.5	66	1.0	1.4	6.9	8.4
Zinc, Zn	mg/kg	0.5	44	26	41	30	180

			QC2A
			SOIL
			- 14/12/2017
PARAMETER	UOM	LOR	SE173782.028
Arsenic, As	mg/kg	3	6
Cadmium, Cd	mg/kg	0.3	<0.3
Chromium, Cr	mg/kg	0.3	37
Copper, Cu	mg/kg	0.5	6.9
Lead, Pb	mg/kg	1	66
Nickel, Ni	mg/kg	0.5	3.8
Zinc, Zn	mg/kg	0.5	120

Mercury in Soil [AN312] Tested: 19/12/2017

			TP1/0.5-1.0	TP2/0.3-1.0	TP3/0.2-0.3	TP4/0.2-0.3	TP5/0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
			13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
PARAMETER	UOM	LOR	SE173782.001	SE173782.002	SE173782.003	SE173782.004	SE173782.005
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	<0.05

			TP6/0.2-0.3	TP7/0.2-0.3	S1	S2	S3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/12/2017	13/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.006	SE173782.007	SE173782.008	SE173782.009	SE173782.010
Mercury	mg/kg	0.05	<0.05	<0.05	0.10	<0.05	<0.05

			S4	S5	S6	S7	S8
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.011	SE173782.012	SE173782.013	SE173782.014	SE173782.015
Mercury	mg/kg	0.05	<0.05	0.07	<0.05	<0.05	0.09

			S9	S10	SH1	SH2	SH3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.016	SE173782.017	SE173782.018	SE173782.019	SE173782.020
Mercury	mg/kg	0.05	0.24	0.10	0.09	0.08	0.25

			SH4	BH10/0.2-0.3	BH11/0.2-0.3	BH12/0.2-0.3	QC1A
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.021	SE173782.024	SE173782.025	SE173782.026	SE173782.027
Mercury	mg/kg	0.05	<0.05	<0.05	<0.05	<0.05	0.09

			QC2A
			SOIL
			- 14/12/2017
PARAMETER	UOM	LOR	SE173782.028
Mercury	mg/kg	0.05	0.08

Moisture Content [AN002] Tested: 18/12/2017

			TP1/0.5-1.0	TP2/0.3-1.0	TP3/0.2-0.3	TP4/0.2-0.3	TP5/0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
PARAMETER	UOM	LOR	SE173782.001	SE173782.002	SE173782.003	SE173782.004	SE173782.005
% Moisture	%w/w	0.5	34	8.3	15	11	5.3

			TP6/0.2-0.3	TP7/0.2-0.3	S1	S2	S3
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 13/12/2017	- 13/12/2017	- 14/12/2017	- 14/12/2017	- 14/12/2017
PARAMETER	UOM	LOR	SE173782.006	SE173782.007	SE173782.008	SE173782.009	SE173782.010
% Moisture	%w/w	0.5	7.8	3.3	11	2.4	5.1

			S4	S5	S6	S7	S8
			SOIL	SOIL	SOIL	SOIL	SOIL
			- 14/12/2017	- 14/12/2017	- 14/12/2017	- 14/12/2017	- 14/12/2017
PARAMETER	UOM	LOR	SE173782.011	SE173782.012	SE173782.013	SE173782.014	SE173782.015
% Moisture	%w/w	0.5	5.5	12	3.6	4.0	12

			S9	S10	SH1	SH2	SH3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.016	SE173782.017	SE173782.018	SE173782.019	SE173782.020
% Moisture	%w/w	0.5	13	8.3	9.4	7.9	5.2

			SH4	BH10/0.2-0.3	BH11/0.2-0.3	BH12/0.2-0.3	QC1A
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.021	SE173782.024	SE173782.025	SE173782.026	SE173782.027
% Moisture	%w/w	0.5	3.0	3.9	6.5	3.5	11

			QC2A
			SOIL
			14/12/2017
PARAMETER	UOM	LOR	SE173782.028
% Moisture	%w/w	0.5	12

Fibre Identification in soil [AN602] Tested: 20/12/2017

			TP1/0.5-1.0	TP2/0.3-1.0	TP3/0.2-0.3	TP4/0.2-0.3	TP5/0.2-0.3
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/12/2017	13/12/2017	13/12/2017	13/12/2017	13/12/2017
PARAMETER	UOM	LOR	SE173782.001	SE173782.002	SE173782.003	SE173782.004	SE173782.005
Asbestos Detected	No unit	-	No	No	No	No	Yes
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	>0.01

			TP6/0.2-0.3	TP7/0.2-0.3	S1	S3	S5
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			13/12/2017	13/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.006	SE173782.007	SE173782.008	SE173782.010	SE173782.012
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			S7	S8	S9	SH1	SH2
			SOIL	SOIL	SOIL	SOIL	SOIL
							-
			14/12/2017	14/12/2017	14/12/2017	14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.014	SE173782.015	SE173782.016	SE173782.018	SE173782.019
Asbestos Detected	No unit	-	No	No	No	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01	<0.01	<0.01	<0.01

			SH3	SH4
			SOIL	SOIL
			14/12/2017	14/12/2017
PARAMETER	UOM	LOR	SE173782.020	SE173782.021
Asbestos Detected	No unit	-	No	No
Estimated Fibres*	%w/w	0.01	<0.01	<0.01

Fibre ID in bulk materials [AN602] Tested: 21/12/2017

			PACM1	PACM2
			MATERIAL	MATERIAL
			- 13/12/2017	- 14/12/2017
PARAMETER	UOM	LOR	SE173782.022	SE173782.023
Asbestos Detected	No unit	-	Yes	Yes

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS /ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic 'clues', which provide a reasonable degree of certainty, dispersion staining is a mandatory 'clue' for positive identification. If sufficient 'clues' are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples, Section 8.4, Trace Analysis Criteria, Note 4 states:"Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

FOOTNOTES -

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

UOM Unit of Measure. LOR Limit of Reporting. ↑↓ Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : <u>http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</u>

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

ANALYTICAL REPORT

CLIENT DETAILS		LABORATORY DETAI	LS
Contact	Gonzalo Parra	Manager	Huong Crawford
Client	LAND AND GROUNDWATER CONSULTING PTY LTD	Laboratory	SGS Alexandria Environmental
Address	131 B Riverview Road NSW 2204	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95598424	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	gparra@lgconsult.com.au	Email	au.environmental.sydney@sgs.com
Project	LG17100.01 Dillwynnia Grove, Heathcote	SGS Reference	SE173782 R0
Order Number	LGC141106060	Date Received	14 Dec 2017
Samples	19	Date Reported	21 Dec 2017

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

No respirable fibres detected in all soil samples using trace analysis technique.

A portion of the sample supplied has been sub-sampled for asbestos due to large sample volume according to SGS In-house procedures. We therefore cannot guarantee that the sub-sample is representative of the entire sample supplied. SGS Environment, Health and Safety recommends supplying approximately 50-100g of sample in a separate container.

Sample #5: Asbestos found as approx 20x10x2mm cement sheet fragment.

Asbestos analysed by Approved Identifier Ravee Sivasubramaniam.

SIGNATORIES

Akheeqar Beniameen Chemist

kinty

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

S. Ravender.

Ravee Sivasubramaniam Hygiene Team Leader

SGS Australia Pty Ltd ABN 44 000 964 278 Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

2015 Australia 2015 Australia

Kamrul Ahsan

Senior Chemist

t +61 2 8594 0400 www.sgs.com.au f +61 2 8594 0499

Member of the SGS Group

ANALYTICAL REPORT

RESULTS Fibre Identificat					Method AN602			
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*		
SE173782.001	TP1/0.5-1.0	Soil	134g Sand, Soil, Rocks	13 Dec 2017	No Asbestos Found	<0.01		
SE173782.002	TP2/0.3-1.0	Soil	198g Sand, Soil, Rocks, Plant matter	13 Dec 2017	No Asbestos Found Organic Fibres Detected	<0.01		
SE173782.003	TP3/0.2-0.3	Soil	157g Sand, Soil, Rocks, Plant matter	13 Dec 2017	No Asbestos Found Organic Fibres Detected	<0.01		
SE173782.004	TP4/0.2-0.3	Soil	141g Clay, Sand, Rocks	13 Dec 2017	No Asbestos Found Organic Fibres Detected	<0.01		
SE173782.005	TP5/0.2-0.3	Soil	171g Sand, Rocks	13 Dec 2017	Amosite & Chrysotile Asbestos Found	>0.01		
SE173782.006	TP6/0.2-0.3	Soil	194g Clay, Sand, Rocks	13 Dec 2017	No Asbestos Found	<0.01		
SE173782.007	TP7/0.2-0.3	Soil	161g Sand, Soil, Plant matter	13 Dec 2017	No Asbestos Found Organic Fibres Detected	<0.01		
SE173782.008	S1	Soil	153g Sand, Soil, Rocks	14 Dec 2017	No Asbestos Found	<0.01		
SE173782.010	\$3	Soil	138g Sand	14 Dec 2017	No Asbestos Found Organic Fibres Detected	<0.01		
SE173782.012	S5	Soil	149g Sand, Soil, Rocks	14 Dec 2017	No Asbestos Found Organic Fibres Detected	<0.01		
SE173782.014	S7	Soil	188g Clay, Sand, Rocks	14 Dec 2017	No Asbestos Found	<0.01		
SE173782.015	S8	Soil	124g Sand, Soil, Rocks	14 Dec 2017	No Asbestos Found Organic Fibres Detected	<0.01		
SE173782.016	S9	Soil	152g Sand, Soil, Rocks	14 Dec 2017	No Asbestos Found	<0.01		
SE173782.018	SH1	Soil	152g Sand, Soil, Rocks	14 Dec 2017	No Asbestos Found	<0.01		
SE173782.019	SH2	Soil	149g Sand, Soil	14 Dec 2017	No Asbestos Found	<0.01		
SE173782.020	SH3	Soil	138g Clay, Soil, Plant matter	14 Dec 2017	No Asbestos Found Organic Fibres Detected	<0.01		
SE173782.021	SH4	Soil	151g Sand, Soil, Rocks	14 Dec 2017	No Asbestos Found	<0.01		

ANALYTICAL REPORT

SE173782 R0

RESULTS -	a materials				Method AN602	
Laboratory Reference	Client Reference	Matrix	Sample Description	Date Sampled	Fibre Identification	Est.%w/w*
SE173782.022	PACM1	Other	90 x 50 x 10mm cement sheet fragments	13 Dec 2017	Amosite & Chrysotile Asbestos Detected	
SE173782.023	PACM2	Other	80 x 20 x 4mm cement sheet fragments	14 Dec 2017	Amosite, Chrysotile & Crocidolite Asbestos Detected	

METHOD SUMMARY

METHOD	METHODOLOGY SUMMARY
AN602	Qualitative identification of chrysotile, amosite and crocidolite in bulk samples by polarised light microscopy (PLM) in conjunction with dispersion staining (DS). AS4964 provides the basis for this document. Unequivocal identification of the asbestos minerals present is made by obtaining sufficient diagnostic `clues`, which provide a reasonable degree of certainty, dispersion staining is a mandatory `clue` for positive identification. If sufficient `clues` are absent, then positive identification of asbestos is not possible. This procedure requires removal of suspect fibres/bundles from the sample which cannot be returned.
AN602	Fibres/material that cannot be unequivocably identified as one of the three asbestos forms, will be reported as unknown mineral fibres (umf) The fibres detected may or may not be asbestos fibres.
AN602	AS4964.2004 Method for the Qualitative Identification of Asbestos in Bulk Samples , Section 8.4, Trace Analysis Criteria, Note 4 states: "Depending upon sample condition and fibre type, the detection limit of this technique has been found to lie generally in the range of 1 in 1,000 to 1 in 10,000 parts by weight, equivalent to 1 to 0.1 g/kg."
AN602	The sample can be reported "no asbestos found at the reporting limit of 0.1 g/kg" (<0.01%w/w) where AN602 section 4.5 of this method has been followed, and if-
	 (a) no trace asbestos fibres have been detected (i.e. no 'respirable' fibres): (b) the estimated weight of non-respirable asbestos fibre bundles and/or the estimated weight of asbestos in asbestos-containing materials are found to be less than 0.1g/kg: and (c) these non-respirable asbestos fibre bundles and/or the asbestos containing materials are only visible under stereo-microscope viewing conditions.

Amosite Brown Asbestos NA Not Analysed White Asbestos Chrysotile INR Listed. Not Required --Crocidolite -Blue Asbestos * -NATA accreditation does not cover the performance of this service . ** Amosite and/or Crocidolite Amphiboles Indicative data, theoretical holding time exceeded.

(In reference to soil samples only) This report does not comply with the analytical reporting recommendations in the Western Australian Department of Health Guidelines for the Assessment and Remediation and Management of Asbestos Contaminated sites in Western Australia - May 2009.

Sampled by the client.

FOOTNOTES -

Where reported: 'Asbestos Detected': Asbestos detected by polarised light microscopy, including dispersion staining. Where reported: 'No Asbestos Found': No Asbestos Found by polarised light microscopy, including dispersion staining. Where reported: 'UMF Detected': Mineral fibres of unknown type detected by polarised light microscopy, including dispersion staining. Confirmation by another independent analytical technique may be necessary.

Even after disintegration it can be very difficult, or impossible, to detect the presence of asbestos in some asbestos -containing bulk materials using polarised light microscopy. This is due to the low grade or small length or diameter of asbestos fibres present in the material, or to the fact that very fine fibres have been distributed intimately throughout the materials.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sgs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Gonzalo Parra	Manager	Huong Crawford
Client	LAND AND GROUNDWATER CONSULTING PTY LTD	Laboratory	SGS Alexandria Environmental
Address	131 B Riverview Road NSW 2204	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95598424	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	gparra@lgconsult.com.au	Email	au.environmental.sydney@sgs.com
Project	LG17100.01 Dillwynnia Grove, Heathcote	SGS Reference	SE173782 R0
Order Number	LGC141106060	Date Received	14 Dec 2017
Samples	28	Date Reported	22 Dec 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	2 items
Matrix Spike	Mercury in Soil	1 item
	Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES	3 items

Samples clearly labelled Sample container provider Samples received in correct Date documentation receive Samples received in good or Sample temperature upon re Furnaround time requested	d ^r der	Yes SGS Yes 14/12/2017 Yes 10.2°C Standard	Sample cool Sample cour Type of docu Samples rec	0		Yes Ice Bricks 26 Soil, 2 Materi COC Yes Yes	al
SGS Australia Pty Ltd ABN 44 000 964 278	Environment, Health and		Jnit 16 33 Maddox St PO Box 6432 Bourke Rd BC	Alexandria NSW 2015 Alexandria NSW 2015	Australia Australia	t +61 2 8594 0400 f +61 2 8594 0499	www.sgs.com.au

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PAMPP	Fibre ID in bulk materials							Method: I	ME-(AU)-[ENV]AN602
NAME6 JUNCAUE1 (JUNCAUE1 (Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
CheckSecond MarcolApple Marcol <t< td=""><td>PACM1</td><td>SE173782.022</td><td>LB139089</td><td>13 Dec 2017</td><td>14 Dec 2017</td><td>13 Dec 2018</td><td>21 Dec 2017</td><td>13 Dec 2018</td><td>21 Dec 2017</td></t<>	PACM1	SE173782.022	LB139089	13 Dec 2017	14 Dec 2017	13 Dec 2018	21 Dec 2017	13 Dec 2018	21 Dec 2017
Sample Name Sample Name Description Strate Action Date Extraction Date Extraction Date Analysis Date Analysis Date 17903-10 Str1782-200 L193027 13 Dec.2017 13 Dec.2017 13 Dec.2017 13 Dec.2017 15 Dec.2017 14 Dec.2017	PACM2	SE173782.023	LB139089	14 Dec 2017	14 Dec 2017	14 Dec 2018	21 Dec 2017	14 Dec 2018	21 Dec 2017
Trinds 1First 30.00First 30.00<	Fibre Identification in soil							Method: I	ME-(AU)-[ENV]AN602
IPAD-10IPAD-20<	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Triple.23.0Str3780.00USM071 She 2h71 A be 2h71 She 2h7 <td>TP1/0.5-1.0</td> <td>SE173782.001</td> <td>LB139027</td> <td>13 Dec 2017</td> <td>14 Dec 2017</td> <td>13 Dec 2018</td> <td>20 Dec 2017</td> <td>13 Dec 2018</td> <td>21 Dec 2017</td>	TP1/0.5-1.0	SE173782.001	LB139027	13 Dec 2017	14 Dec 2017	13 Dec 2018	20 Dec 2017	13 Dec 2018	21 Dec 2017
Tre0.2.3.1St7378.0.01St398.201St498.201<	TP2/0.3-1.0	SE173782.002	LB139027	13 Dec 2017	14 Dec 2017	13 Dec 2018	20 Dec 2017	13 Dec 2018	21 Dec 2017
mpmodelmpmmodelmpmodelmpmodelmpmodel	TP3/0.2-0.3	SE173782.003	LB139027	13 Dec 2017	14 Dec 2017	13 Dec 2018	20 Dec 2017	13 Dec 2018	21 Dec 2017
TP002.0.3 St17776.000 LibitS27	TP4/0.2-0.3	SE173782.004	LB139027	13 Dec 2017	14 Dec 2017	13 Dec 2018	20 Dec 2017	13 Dec 2018	21 Dec 2017
TYP0.9.1.1Sel1737.607H S De 2017H Ge 2017H Ge 2018S De 2017H Ge 2018H De 2017H Ge 2018H De 2017 <thh 2018<="" ge="" td=""><td>TP5/0.2-0.3</td><td>SE173782.005</td><td>LB139027</td><td>13 Dec 2017</td><td>14 Dec 2017</td><td>13 Dec 2018</td><td>20 Dec 2017</td><td>13 Dec 2018</td><td>21 Dec 2017</td></thh>	TP5/0.2-0.3	SE173782.005	LB139027	13 Dec 2017	14 Dec 2017	13 Dec 2018	20 Dec 2017	13 Dec 2018	21 Dec 2017
SiSi 17776.00Li Nu02Li Due 207Li Due 207Li Due 208Si Due 207Li Due 2082 Due 207Li Due 208Due 208Due 208Due 208Due 208Due 208Due 208Du	TP6/0.2-0.3	SE173782.006	LB139027	13 Dec 2017	14 Dec 2017	13 Dec 2018	20 Dec 2017	13 Dec 2018	21 Dec 2017
ShSh TYTPEOPOM 1002071 4 De 20174 M 20101 4 De 20142 De 20171 4 De 20141 De 20171 4 De 20171 De	TP7/0.2-0.3	SE173782.007	LB139027	13 Dec 2017	14 Dec 2017	13 Dec 2018	20 Dec 2017	13 Dec 2018	21 Dec 2017
Shi Shi 7370 012 LH 3007 4 Dec 2017 14 Dec 2018 20 Dec 2017 10 Dec 2018 20	S1	SE173782.008	LB139027	14 Dec 2017	14 Dec 2017	14 Dec 2018	20 Dec 2017	14 Dec 2018	21 Dec 2017
SF <td>S3</td> <td>SE173782.010</td> <td>LB139027</td> <td>14 Dec 2017</td> <td>14 Dec 2017</td> <td>14 Dec 2018</td> <td>20 Dec 2017</td> <td>14 Dec 2018</td> <td>21 Dec 2017</td>	S3	SE173782.010	LB139027	14 Dec 2017	14 Dec 2017	14 Dec 2018	20 Dec 2017	14 Dec 2018	21 Dec 2017
Sec SET782.015 LB13807 44 Dec.2017 44 Dec.2017 44 Dec.2018 20 Dec.2077 44 Dec.2018 20 Dec.2017 44 Dec.2018 40 Dec.2017 40 Dec.2018 40 Dec.2017 40	S5	SE173782.012	LB139027	14 Dec 2017	14 Dec 2017	14 Dec 2018	20 Dec 2017	14 Dec 2018	21 Dec 2017
99 95 <th< td=""><td>S7</td><td>SE173782.014</td><td>LB139027</td><td>14 Dec 2017</td><td>14 Dec 2017</td><td>14 Dec 2018</td><td>20 Dec 2017</td><td>14 Dec 2018</td><td>21 Dec 2017</td></th<>	S7	SE173782.014	LB139027	14 Dec 2017	14 Dec 2017	14 Dec 2018	20 Dec 2017	14 Dec 2018	21 Dec 2017
SH1 SH1732014 LB18007 14 Dec 2017 14 Dec 2018 14 Dec 2018 20 Dec 2017 14 Dec 2018 10 Dec 2017 10 Dec	S8								
BPI BFIT7782.010 BFIT7782.001 LB138811 TI Dec 2017 H Dec 2018 DDec 2017 H Dec 2017	S9								
SH3 SET 772 2020 LI 139027 14 Dec 2017 14 Dec 2018 20 Dec 2017 14 Dec 2018 20 Dec 2017 14 Dec 2018 20 Dec 2017 SH4 SET 772 202 LI 139027 14 Dec 2017 14 Dec 2018 20 Dec 2017 10 Jan 2018 10 Jan 2018 21 Dec 2017 TP00-2-0.3 SET 772.000 LE 138911 11 Dec 2017 10 Jan 2018 10 Jan 2018 10 Jan 2018 21 Dec 2017 TP70-2-0.3 SET 7772.000 LE 138911 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SET 7772.000 LE 138911 14 Dec 2017 11 Jan 2018 19 Dec 2017	SH1	÷							
SH4 SE 173782.021 LB 139027 14 Dec 2017 14 Dec 2018 20 Dec 2017 14 Dec 2018 21 Dec 2017 Attractive SGI Stample Name OC Ref Sample Name Extraction Dus Extraction Dus <the< td=""><td>SH2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></the<>	SH2								
Advance in Sol Sample No. OC Ref Sample No. Sample No. OC Ref Sample No. Received Extracted Nalysed Analyses Due 2017 10 Jan 2018 10 Dec 2017 10 Jan 2018 10 Dec 2017 1720.3-1.0 SET73782.002 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 10 Dec 2017 1720.2-3.0 SET73782.004 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 12 Dec 2017 1780.2-0.3 SET73782.004 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 12 Dec 2017 1790.2-0.3 SET73782.004 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 11 Jan 2018 1									
Sample Name Sample No. OC Ref Sampled Received Extracted Analysed P10.0-1-0 SE17378.2001 L6138811 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 10 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 TP302.20.3 SE173782.006 L6138811 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 TP502.20.3 SE173782.006 L6138811 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 TP502.20.3 SE173782.006 L6138811 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S1 SE173782.001 L6138811 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017	SH4	SE173782.021	LB139027	14 Dec 2017	14 Dec 2017	14 Dec 2018	20 Dec 2017		
TP105-10 SE17372.00 L013811 13 De 2017 14 Dec 2017 10 Jan 2018 19 De 2017 10 Jan 2018 19 De 2017 10 Jan 2018 19 De 2017 10 Jan 2018 21 Dec 2017 TP203-10 SE17378.200 L013811 13 De 2017 14 Dec 2017 10 Jan 2018 19 De 2017 10 Jan 2018 19 De 2017 10 Jan 2018 21 Dec 2017 TP402-03 SE17378.200 L013811 13 De 2017 14 Dec 2017 10 Jan 2018 19 De 2017 10 Jan 2018 21 Dec 2017 TP402-03 SE17378.200 L013811 13 De 2017 14 Dec 2017 10 Jan 2018 19 De 2017 10 Jan 2018 21 Dec 2017 TP702-03 SE17378.200 L013811 14 De 2017 14 Dec 2017 11 Jan 2018 19 De 2017 11 Jan 2018 21 Dec 2017 SE17378.201 L013811 14 De 2017 14 Dec 2017 11 Jan 2018 19 De 2017 11 Jan 2018 21 Dec 2017 11 Jan 2018 21 Dec 2017 11 Jan 2018 21 De 2017 11 Jan 2018 21 De 2017 11 Jan 2018 21 Dec 2017 11 Jan 2018 21 De 2017 11 Jan 2018 21 De 2017 11 Jan 2018 21 De 2017 11 Jan 20	Mercury in Soil							Method: I	ME-(AU)-[ENV]AN312
TP203-10 SF17782002 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 TP30-2-0.3 SF17782004 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 TP30-2-0.3 SF17782005 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 TP30-2-0.3 SF17782007 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 TP30-2-0.3 SF17782007 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S1 SE17782001 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S3 SE17782010 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S4 SE17782012 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP30203 SE17372003 EB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 10 Dac 2018 10 Dac 2018 10 Dec 2017 10 Jan 2018 21 Dec 2017 TP40243 SE17372005 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 TP50243 SE17372005 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 TP70243 SE17372005 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S1 SE1737200 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S4 SE17372011 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S5 SE173782.013 LB138911 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S6 SE173782.014 LB138911 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017	TP1/0.5-1.0	SE173782.001	LB138911	13 Dec 2017	14 Dec 2017	10 Jan 2018	19 Dec 2017	10 Jan 2018	21 Dec 2017
TP40.2.0.3 SE17372.004 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 TP50.2.0.3 SE17372.005 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 TP70.2.0.3 SE17372.007 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 SE17372.007 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SE173782.001 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SE173782.010 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SE173782.014 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SE173782.015 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SE173782.015 LB138911 14 Dec 2017 <t< td=""><td>TP2/0.3-1.0</td><td></td><td>LB138911</td><td>13 Dec 2017</td><td></td><td>10 Jan 2018</td><td>19 Dec 2017</td><td>10 Jan 2018</td><td>21 Dec 2017</td></t<>	TP2/0.3-1.0		LB138911	13 Dec 2017		10 Jan 2018	19 Dec 2017	10 Jan 2018	21 Dec 2017
TFS0203 SE173782.005 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 12 Dec 2017 TP602.03 SE173782.006 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 21 Dec 2017 S1 SE173782.008 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S2 SE173782.010 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S4 SE173782.010 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S6 SE173782.014 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S6 SE173782.014 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S6 SE173782.016 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 <td></td> <td>SE173782.003</td> <td></td> <td>13 Dec 2017</td> <td>14 Dec 2017</td> <td></td> <td>19 Dec 2017</td> <td>10 Jan 2018</td> <td>21 Dec 2017</td>		SE173782.003		13 Dec 2017	14 Dec 2017		19 Dec 2017	10 Jan 2018	21 Dec 2017
TP602-0.3 SE173782.006 LB138911 13 Dec 2017 14 Dec 2017 10 Jan 2018 19 Dec 2017 10 Jan 2018 12 Dec 2017 TP702-0.3 SE173782.007 LB138911 14 Dec 2017 11 Jan 2018 19 Dec									
TP702-2-3.3 SE173782.007 LB138911 13 Dec 2017 14 Dec 2017 14 Dec 2017 14 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S1 SE173782.008 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017									
S11 SE 173782.008 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S2 SE 173782.009 LB138911 14 Dec 2017 11 dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S4 SE 173782.011 LB138911 14 Dec 2017 11 dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S4 SE 173782.012 LB138911 14 Dec 2017 11 dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S6 SE 173782.014 LB138911 14 Dec 2017 11 dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S7 SE 173782.016 LB138911 14 Dec 2017 11 dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S1 SE 173782.016 LB138911 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S1 SE 173782.016 LB138911 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S1 SE 173782.016 LB138									
S22 SE173782.000 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S3 SE173782.010 LB138911 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S4 SE173782.012 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S5 SE173782.013 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S6 SE173782.014 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S6 SE173782.016 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S10 SE173782.016 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S11 SE173782.014 LB138909 14 Dec 2017 14 Dec 2017 11 Jan 2018 10 Dec 2017									
S33 SE173782.010 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S4 SE173782.011 LB138911 14 Dec 2017 11 4 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S5 SE173782.013 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S7 SE173782.014 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S8 SE173782.014 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S9 SE173782.017 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S11 SE173782.013 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S11 SE173782.013 LB138909 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 S1									
S41 SE173782.011 LB138911 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S5 SF173782.012 LB138911 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 10 Dec 2017									
S5 SE 173782.012 LB 138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S6 SE 173782.013 LB 138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S7 SE 173782.014 LB 138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S8 SE 173782.016 LB 138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S10 SE 173782.016 LB 138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH1 SE 173782.019 LB 138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH2 SE 173782.020 LB 138900 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH4 SE 173782.024 LB 139009 14 Dec 2017 14 Dec 2017 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
S8 SE173782.013 LB138911 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S7 SE173782.014 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S8 SE173782.015 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S10 SE173782.016 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH1 SE173782.016 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH2 SE173782.021 LB138011 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH2 SE173782.024 LB13809 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH4 SE173782.024 LB138009 14 Dec 2017 14									
SF1 SE 13782.014 LB 18811 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S8 SE 13782.015 LB 18801 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S9 SE 13782.016 LB 18801 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S11 SE 13782.017 LB 18801 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH1 SE 13782.019 LB 18801 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH2 SE 13782.020 LB 18900 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH4 SE 13782.024 LB 18900 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH102.02.3 SE 13782.024 LB 18900 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 20 Dec 2017									
S8 SE173782.015 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S9 SE173782.016 LB138911 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S10 SE173782.017 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH1 SE173782.018 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH2 SE173782.019 LB138909 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH4 SE173782.024 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH1002.0.3 SE173782.024 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH1102.0.3 SE173782.025 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC1A									
S9 SE173782.016 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 S10 SE173782.017 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH1 SE173782.018 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH2 SE173782.019 LB138901 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH3 SE173782.021 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH4 SE173782.024 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH100.2-0.3 SE173782.025 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH120.2-0.3 SE173782.026 LB139009 14 Dec 2017 14 Dec 2017<									
S10 SE 173782.017 LB 138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH1 SE 173782.018 LB 138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH2 SE 173782.020 LB 139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH3 SE 173782.021 LB 139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH4 SE 173782.024 LB 139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH100.2-0.3 SE 173782.025 LB 139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH120.2-0.3 SE 173782.025 LB 139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH120.2-0.3 SE 173782.026 LB 139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 De									
SH1 SE173782.018 LB138911 14 Dec 2017 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH2 SE173782.020 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH3 SE173782.020 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH4 SE173782.021 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH100.2-0.3 SE173782.025 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH100.2-0.3 SE173782.025 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC1A SE173782.025 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC2A SE173782.026 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017									
SH2 SE173782.019 LB138911 14 Dec 2017 11 Jan 2018 19 Dec 2017 11 Jan 2018 21 Dec 2017 SH3 SE173782.020 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH4 SE173782.021 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH100.2-0.3 SE173782.024 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH110.2-0.3 SE173782.025 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC1A SE173782.026 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC1A SE173782.028 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC2A SE173782.028 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC2A <td>SH1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	SH1								
SH3 SE173782.020 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 SH4 SE173782.021 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH100.2-0.3 SE173782.024 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH100.2-0.3 SE173782.025 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH100.2-0.3 SE173782.026 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH100.2-0.3 SE173782.027 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC1A SE173782.028 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC2A SE173782.028 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017	SH2				14 Dec 2017				
BH100.2-0.3 SE173782.024 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH110.2-0.3 SE173782.025 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH120.2-0.3 SE173782.026 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC1A SE173782.027 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC2A SE173782.028 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 Accenter Method: ME-(AU)-[ENV]ANOO2 Method: ME-(AU)-[ENV]ANOO2 Method: ME-(AU)-[ENV]ANOO2 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP10.5-1.0 SE173782.001 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP20.3-1	SH3								
BH11/0.2-0.3 SE173782.025 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 BH12/0.2-0.3 SE173782.026 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC1A SE173782.027 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC2A SE173782.028 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 Acisture Content Set173782.028 LB138009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP10.5-1.0 SE173782.001 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP20.3-1.0 SE173782.003 LB138848 13 Dec 2017<	SH4	SE173782.021	LB139009	14 Dec 2017	14 Dec 2017	11 Jan 2018	20 Dec 2017	11 Jan 2018	21 Dec 2017
BH12/0.2-0.3 SE173782.026 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC1A SE173782.027 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC2A SE173782.028 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 Actisture Content Sentos Method: ME-(AU)-(ENV/JAN002 Method: ME-(AU)-(ENV/JAN002 Method: ME-(AU)-(ENV/JAN002 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP10.5-1.0 SE173782.001 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP20.3-1.0 SE173782.003 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP30.2-0.3 SE173782.004 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 <t< td=""><td>BH10/0.2-0.3</td><td>SE173782.024</td><td>LB139009</td><td>14 Dec 2017</td><td>14 Dec 2017</td><td>11 Jan 2018</td><td>20 Dec 2017</td><td>11 Jan 2018</td><td>21 Dec 2017</td></t<>	BH10/0.2-0.3	SE173782.024	LB139009	14 Dec 2017	14 Dec 2017	11 Jan 2018	20 Dec 2017	11 Jan 2018	21 Dec 2017
QC1A SE173782.027 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 QC2A SE173782.028 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 Accessed SE173782.028 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 Accessed SE173782.028 LB138049 14 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP1/0.5-1.0 SE173782.002 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP2/0.5-1.0 SE173782.003 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP2/0.5-0.3 SE173782.004 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP5/0.2-0.3 SE173782.006 LB138848 13 Dec 2017<	BH11/0.2-0.3	SE173782.025	LB139009	14 Dec 2017	14 Dec 2017	11 Jan 2018	20 Dec 2017	11 Jan 2018	21 Dec 2017
QC2A SE173782.028 LB139009 14 Dec 2017 14 Dec 2017 11 Jan 2018 20 Dec 2017 11 Jan 2018 21 Dec 2017 Moisture Content Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP1/0.5-1.0 SE173782.001 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP2/0.3-1.0 SE173782.002 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP3/0.2-0.3 SE173782.003 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP4/0.2-0.3 SE173782.004 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP5/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB1	BH12/0.2-0.3	SE173782.026	LB139009	14 Dec 2017	14 Dec 2017	11 Jan 2018	20 Dec 2017	11 Jan 2018	21 Dec 2017
Moisture Content Method: ME-(AU)-[ENV]AN002 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed TP1/0.5-1.0 SE173782.001 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP2/0.3-1.0 SE173782.002 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP3/0.2-0.3 SE173782.003 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP4/0.2-0.3 SE173782.004 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP5/0.2-0.3 SE173782.005 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017	QC1A	SE173782.027	LB139009	14 Dec 2017	14 Dec 2017	11 Jan 2018	20 Dec 2017	11 Jan 2018	21 Dec 2017
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysis TP1/0.5-1.0 SE173782.001 LB138448 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP2/0.3-1.0 SE173782.002 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP3/0.2-0.3 SE173782.003 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP4/0.2-0.3 SE173782.004 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP5/0.2-0.3 SE173782.005 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848 13 D	QC2A	SE173782.028	LB139009	14 Dec 2017	14 Dec 2017	11 Jan 2018	20 Dec 2017	11 Jan 2018	21 Dec 2017
TP1/0.5-1.0 SE173782.001 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP2/0.3-1.0 SE173782.002 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP3/0.2-0.3 SE173782.003 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP4/0.2-0.3 SE173782.004 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP5/0.2-0.3 SE173782.005 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.005 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848	Moisture Content							Method: I	ME-(AU)-[ENV]AN002
TP2/0.3-1.0 SE173782.002 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP3/0.2-0.3 SE173782.003 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP4/0.2-0.3 SE173782.004 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP5/0.2-0.3 SE173782.005 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP3/0.2-0.3 SE173782.003 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP4/0.2-0.3 SE173782.004 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP5/0.2-0.3 SE173782.005 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017	TP1/0.5-1.0	SE173782.001	LB138848	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
TP4/0.2-0.3 SE173782.004 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP5/0.2-0.3 SE173782.005 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017	TP2/0.3-1.0	SE173782.002	LB138848	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
TP5/0.2-0.3 SE173782.005 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017	TP3/0.2-0.3	SE173782.003	LB138848	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
TP6/0.2-0.3 SE173782.006 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017	TP4/0.2-0.3	SE173782.004	LB138848	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
	TP5/0.2-0.3	SE173782.005	LB138848	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
TP7/0.2-0.3 SE173782.007 LB138848 13 Dec 2017 14 Dec 2017 27 Dec 2017 18 Dec 2017 23 Dec 2017 20 Dec 2017		SE173782.006		13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
	TP7/0.2-0.3	SE173782.007	LB138848	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017

Method: ME_(ALI)_IEN/(AN420

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Moisture Content (continued)

Moisture Content (continued) Method: ME-(AU)-[ENV								
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S1	SE173782.008	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
S2	SE173782.009	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
S3	SE173782.010	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
S4	SE173782.011	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
S5	SE173782.012	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
S6	SE173782.013	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
S7	SE173782.014	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
S8	SE173782.015	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
S9	SE173782.016	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
S10	SE173782.017	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
SH1	SE173782.018	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
SH2	SE173782.019	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
SH3	SE173782.020	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
SH4	SE173782.021	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
BH10/0.2-0.3	SE173782.024	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
BH11/0.2-0.3	SE173782.025	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
BH12/0.2-0.3	SE173782.026	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
QC1A	SE173782.027	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
QC2A	SE173782.028	LB138848	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017

OC Pesticides in Soil

TP10.5-1.0SE 173782.001LB13873213 Dec 201714 Dec 201727 Dec 201715 Dec 201724 Jan 201821 Dec 2017TP20.3-1.0SE 173782.002LB13873213 Dec 201714 Dec 201727 Dec 201715 Dec 201724 Jan 201821 Dec 2017TP30.2-0.3SE 173782.003LB13873213 Dec 201714 Dec 201727 Dec 201715 Dec 201724 Jan 201821 Dec 2017TP40.2-0.3SE 173782.004LB13873213 Dec 201714 Dec 201727 Dec 201715 Dec 201724 Jan 201821 Dec 2017TP50.2-0.3SE 173782.006LB13873213 Dec 201714 Dec 201727 Dec 201715 Dec 201724 Jan 201821 Dec 2017TP70.2-0.3SE 173782.008LB13873213 Dec 201714 Dec 201727 Dec 201715 Dec 201724 Jan 201821 Dec 2017S1SE 173782.009LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S2SE 173782.010LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S3SE 173782.010LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S4SE 173782.011LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S4SE 173782.014LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S5SE	OC Pesticides in Soil							Method: I	ME-(AU)-[ENV]AN420
TP20.3-1.0 SE 173782.002 LB188732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 TP30.2-0.3 SE 173782.003 LB188732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 TP40.2-0.3 SE 173782.004 LB188732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 TP60.2-0.3 SE 173782.006 LB188732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 TP70.2-0.3 SE 173782.006 LB188732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 S1 SE 173782.009 LB188732 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 S2 SE 173782.009 LB188732 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 S4 SE 173782.010 LB188732 14 Dec 2017 28 Dec 2017 15 Dec 2017	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP302-0.3 SE173782.003 LB188732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 TP402-0.3 SE173782.004 LB188732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 TP502-0.3 SE173782.005 LB188732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 TP502-0.3 SE173782.006 LB188732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 TP702-0.3 SE173782.008 LB188732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 S1 SE173782.008 LB188732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 S2 SE173782.010 LB188732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 S4 SE173782.010 LB18732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017	TP1/0.5-1.0	SE173782.001	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
TP402-0.3 SE 173782.004 LB 138732 13 Dac 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 TP502-0.3 SE 173782.005 LB 138732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 TP502-0.3 SE 173782.005 LB 138732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 SE 173782.007 LB 138732 14 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 S1 SE 173782.008 LB 138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 S2 SE 173782.010 LB 138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 S4 SE 173782.011 LB 138732 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 S6 SE 173782.013 LB 138732 14 Dec 2017 28 Dec 2017 15 Dec 2017	TP2/0.3-1.0	SE173782.002	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
TP50.2.0.3SE 173782.005LB 13873213 Dec 201714 Dec 201727 Dec 201715 Dec 201724 Jan 201821 Dec 2017TP60.2.0.3SE 173782.006LB 13873213 Dec 201714 Dec 201727 Dec 201715 Dec 201724 Jan 201821 Dec 2017TP70.2.0.3SE 173782.007LB 13873214 Dec 201714 Dec 201727 Dec 201715 Dec 201724 Jan 201821 Dec 2017S1SE 173782.008LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S2SE 173782.009LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S4SE 173782.010LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S4SE 173782.011LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S5SE 173782.012LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S6SE 173782.014LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S7SE 13782.015LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S9SE 173782.016LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S10SE 173782.016 </td <td>TP3/0.2-0.3</td> <td>SE173782.003</td> <td>LB138732</td> <td>13 Dec 2017</td> <td>14 Dec 2017</td> <td>27 Dec 2017</td> <td>15 Dec 2017</td> <td>24 Jan 2018</td> <td>21 Dec 2017</td>	TP3/0.2-0.3	SE173782.003	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
TP6/0.2-0.3SE 173782.006LB 13873213 Dec 201714 Dec 201727 Dec 201715 Dec 201724 Jan 201821 Dec 2017TP7/0.2-0.3SE 173782.007LB 13873214 Dec 201714 Dec 201727 Dec 201715 Dec 201724 Jan 201821 Dec 2017S1SE 173782.008LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S2SE 173782.009LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S4SE 173782.010LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S4SE 173782.010LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S4SE 173782.012LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S6SE 173782.013LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S6SE 173782.015LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S7SE 173782.016LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S9SE 173782.016LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S10SE 173782.016 <t< td=""><td>TP4/0.2-0.3</td><td>SE173782.004</td><td>LB138732</td><td>13 Dec 2017</td><td>14 Dec 2017</td><td>27 Dec 2017</td><td>15 Dec 2017</td><td>24 Jan 2018</td><td>21 Dec 2017</td></t<>	TP4/0.2-0.3	SE173782.004	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
TP7/0.2-0.3SE 173782.007LB 13873213 Dec 201714 Dec 201727 Dec 201715 Dec 201724 Jan 201821 Dec 2017S1SE 173782.008LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S2SE 173782.009LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S3SE 173782.010LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S4SE 173782.011LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S5SE 173782.012LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S6SE 173782.013LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S7SE 173782.014LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S8SE 173782.016LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S9SE 173782.016LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S1SE 173782.016LB 13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S1SE 173782.016LB 13873	TP5/0.2-0.3	SE173782.005	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S1SE173782.008LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S2SE173782.009LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S3SE173782.010LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S4SE173782.011LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S5SE173782.012LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S6SE173782.013LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S7SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S8SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S9SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S10SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.019LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.020LB13873314 Dec 2017	TP6/0.2-0.3	SE173782.006	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S2SE173782.009LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S3SE173782.010LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S4SE173782.011LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S5SE173782.012LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S6SE173782.013LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S7SE173782.014LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S8SE173782.015LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S9SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S10SE173782.018LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S12SE173782.019LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S14SE173782.019LB1387314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S14SE173782.020LB1387314 Dec 20171	TP7/0.2-0.3	SE173782.007	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S3SE173782.010LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S4SE173782.011LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S5SE173782.012LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S6SE173782.013LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S7SE173782.014LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S8SE173782.015LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S9SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S10SE173782.017LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH1SE173782.018LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.019LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.024LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH4SE173782.025LB13873314 Dec 2017 <t< td=""><td>S1</td><td>SE173782.008</td><td>LB138732</td><td>14 Dec 2017</td><td>14 Dec 2017</td><td>28 Dec 2017</td><td>15 Dec 2017</td><td>24 Jan 2018</td><td>21 Dec 2017</td></t<>	S1	SE173782.008	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S4SE173782.011LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S5SE173782.012LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S6SE173782.013LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S7SE173782.014LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S8SE173782.015LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S9SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S10SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S10SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S11SE173782.018LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.019LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.021LB1387314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH3SE173782.024LB1387314 Dec 2017 <td< td=""><td>S2</td><td>SE173782.009</td><td>LB138732</td><td>14 Dec 2017</td><td>14 Dec 2017</td><td>28 Dec 2017</td><td>15 Dec 2017</td><td>24 Jan 2018</td><td>21 Dec 2017</td></td<>	S2	SE173782.009	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S5SE173782.012LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S6SE173782.013LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S7SE173782.014LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S8SE173782.015LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S9SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S10SE173782.017LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH1SE173782.018LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.018LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.019LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH3SE173782.020LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH4SE173782.021LB1387314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH4SE173782.025LB1387314 Dec 2017 <t< td=""><td>S3</td><td>SE173782.010</td><td>LB138732</td><td>14 Dec 2017</td><td>14 Dec 2017</td><td>28 Dec 2017</td><td>15 Dec 2017</td><td>24 Jan 2018</td><td>21 Dec 2017</td></t<>	S3	SE173782.010	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S6SE173782.013LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S7SE173782.014LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S8SE173782.015LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S9SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S10SE173782.017LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH1SE173782.018LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.019LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH3SE173782.020LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH4SE173782.021LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH10.02-0.3SE173782.025LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH10.02-0.3SE173782.026LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH12.02-0.3SE173782.026LB138733	S4	SE173782.011	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S7SE173782.014LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S8SE173782.015LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S9SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S10SE173782.017LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH1SE173782.018LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.019LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH3SE173782.020LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH4SE173782.021LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH10.02-0.3SE173782.024LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH10.02-0.3SE173782.026LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH12.02-0.3SE173782.026LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH12.02-0.3SE173782.026 <td< td=""><td>S5</td><td>SE173782.012</td><td>LB138732</td><td>14 Dec 2017</td><td>14 Dec 2017</td><td>28 Dec 2017</td><td>15 Dec 2017</td><td>24 Jan 2018</td><td>21 Dec 2017</td></td<>	S5	SE173782.012	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S8SE173782.015LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S9SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S10SE173782.017LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH1SE173782.018LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.019LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH3SE173782.020LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH4SE173782.021LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH10.02-0.3SE173782.024LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH10.02-0.3SE173782.025LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH12.02-0.3SE173782.026LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH12.02-0.3SE173782.027LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH12.02-0.3SE173782.02	S6	SE173782.013	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S9SE173782.016LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017S10SE173782.017LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH1SE173782.018LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.019LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH3SE173782.020LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH4SE173782.021LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH10.02-0.3SE173782.024LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH11/0.2-0.3SE173782.025LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH12/0.2-0.3SE173782.026LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH12/0.2-0.3SE173782.026LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH12/0.2-0.3SE173782.026LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017QC1ASE173	S7	SE173782.014	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S10SE173782.017LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH1SE173782.018LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH2SE173782.019LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH3SE173782.020LB13873214 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH4SE173782.021LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017SH4SE173782.024LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH100.2-0.3SE173782.025LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH120.2-0.3SE173782.026LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017BH120.2-0.3SE173782.027LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017QC1ASE173782.027LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017QC1ASE173782.027LB13873314 Dec 201714 Dec 201728 Dec 201715 Dec 201724 Jan 201821 Dec 2017QC1ASE173782.027L	S8	SE173782.015	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
SH1 SE173782.018 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 SH2 SE173782.019 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 SH3 SE173782.020 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 SH3 SE173782.020 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 SH4 SE173782.021 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH100.2-0.3 SE173782.024 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH110.2-0.3 SE173782.025 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH120.2-0.3 SE173782.026 LB138733 14 Dec 2017 14	S9	SE173782.016	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
SH2 SE173782.019 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 SH3 SE173782.020 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 SH4 SE173782.020 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 SH4 SE173782.021 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH100.2-0.3 SE173782.024 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH110.2-0.3 SE173782.025 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH120.2-0.3 SE173782.026 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 QC1A SE173782.027 LB138733 14 Dec 2017 14	S10	SE173782.017	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
SH3 SE173782.020 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 SH4 SE173782.021 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH10/0.2-0.3 SE173782.024 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH1/0.2-0.3 SE173782.025 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH1/0.2-0.3 SE173782.025 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH12/0.2-0.3 SE173782.026 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 QC1A SE173782.027 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 QC1A SE173782.027 LB138733 14 Dec 2017	SH1	SE173782.018	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
SH4 SE173782.021 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH100.2-0.3 SE173782.024 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH100.2-0.3 SE173782.025 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH120.2-0.3 SE173782.026 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH120.2-0.3 SE173782.026 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 QC1A SE173782.027 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017	SH2	SE173782.019	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
BH10/0.2-0.3 SE173782.024 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH10/0.2-0.3 SE173782.025 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH12/0.2-0.3 SE173782.026 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH12/0.2-0.3 SE173782.026 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 QC1A SE173782.027 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017	SH3	SE173782.020	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
BH11/0.2-0.3 SE173782.025 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH12/0.2-0.3 SE173782.026 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 QC1A SE173782.027 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017	SH4	SE173782.021	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
BH12/0.2-0.3 SE173782.026 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 QC1A SE173782.027 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017	BH10/0.2-0.3	SE173782.024	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
QC1A SE173782.027 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017	BH11/0.2-0.3	SE173782.025	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
	BH12/0.2-0.3	SE173782.026	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
QC2A SE173782.028 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017	QC1A	SE173782.027	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
	QC2A	SE173782.028	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017

OP Pesticides in Soil M					Method:	ME-(AU)-[ENV]AN42		
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1/0.5-1.0	SE173782.001	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
TP2/0.3-1.0	SE173782.002	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
TP3/0.2-0.3	SE173782.003	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
TP4/0.2-0.3	SE173782.004	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
TP5/0.2-0.3	SE173782.005	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
TP6/0.2-0.3	SE173782.006	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
TP7/0.2-0.3	SE173782.007	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S1	SE173782.008	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S2	SE173782.009	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
S3	SE173782.010	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

P Paeticidae in Soil (continued)

OP Pesticides in Soil (cor	· · · ·			_				ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
S4	SE173782.011	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
\$5	SE173782.012	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
6	SE173782.013	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
57	SE173782.014	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
38	SE173782.015	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
39	SE173782.016	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
\$10	SE173782.017	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
SH1	SE173782.018	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
SH2	SE173782.019	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
SH3	SE173782.020	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
SH4	SE173782.021	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
BH10/0.2-0.3	SE173782.024	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
BH11/0.2-0.3	SE173782.025	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
3H12/0.2-0.3	SE173782.026	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
QC1A	SE173782.027	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
QC2A	SE173782.028	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
	tic Hydrocarbons) in Soil				_			ME-(AU)-[ENV]AN4
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
FP1/0.5-1.0	SE173782.001	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
FP2/0.3-1.0	SE173782.002	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
P3/0.2-0.3	SE173782.003	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
P4/0.2-0.3	SE173782.004	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
P5/0.2-0.3	SE173782.005	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
P6/0.2-0.3	SE173782.006	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
P7/0.2-0.3	SE173782.007	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
51	SE173782.008	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
32	SE173782.009	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
33	SE173782.010	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
4	SE173782.011	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
5	SE173782.012	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
6	SE173782.013	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
57	SE173782.014	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
88	SE173782.015	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
39	SE173782.016	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
510	SE173782.017	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
SH1	SE173782.018	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
SH2	SE173782.019	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
SH3	SE173782.020	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
SH4	SE173782.021	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
3H10/0.2-0.3	SE173782.024	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
3H11/0.2-0.3	SE173782.025	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
3H12/0.2-0.3	SE173782.026	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
QC1A	SE173782.027	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
QC2A	SE173782.028	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
CBs in Soil								ME-(AU)-[ENV]AN
Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P1/0.5-1.0	SE173782.001	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
P2/0.3-1.0	SE173782.002	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
P3/0.2-0.3	SE173782.003	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
P4/0.2-0.3	SE173782.004	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
P5/0.2-0.3	SE173782.005	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
P6/0.2-0.3	SE173782.006	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
P7/0.2-0.3	SE173782.007	LB138732	13 Dec 2017	14 Dec 2017	27 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
51	SE173782.008	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
32	SE173782.009	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
3	SE173782.010	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
54	SE173782.011	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
5	SE173782.012	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	21 Dec 2017
			44.5		00.0			

SSPP (Sydney South) revised and additional documentation - (2017SSH019) Part 7

LB138732

14 Dec 2017

14 Dec 2017

28 Dec 2017

15 Dec 2017

24 Jan 2018

SE173782.013

S6

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

PCBs in Soil (continued) Method: ME-(AU)-[ENV]AN420 Sample Name Analysed Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due **S**7 SE173782.014 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 S8 SE173782.015 LB138732 14 Dec 2017 28 Dec 2017 24 Jan 2018 21 Dec 2017 14 Dec 2017 15 Dec 2017 S9 SE173782.016 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 S10 SE173782.017 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 SH1 SE173782.018 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 24 Jan 2018 21 Dec 2017 SH2 SE173782.019 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 SH3 SE173782.020 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 24 Jan 2018 15 Dec 2017 21 Dec 2017 SH4 SE173782.021 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH10/0.2-0.3 SE173782.024 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 BH11/0.2-0.3 SE173782.025 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 14 Dec 2017 BH12/0.2-0.3 SE173782.026 LB138733 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 QC1A SE173782.027 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 QC2A SE173782.028 LB138733 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 21 Dec 2017 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 QC Ref Sample Name Sample No. Analysis Due Sampled Received Extraction Due Extracted Analysed TP1/0.5-1.0 SE173782.001 LB138922 11 Jun 2018 13 Dec 2017 14 Dec 2017 11 Jun 2018 19 Dec 2017 21 Dec 2017 TP2/0 3-1 0 SE173782 002 LB138922 13 Dec 2017 14 Dec 2017 11 Jun 2018 19 Dec 2017 11 Jun 2018 21 Dec 2017 TP3/0.2-0.3 SE173782.003 LB138922 13 Dec 2017 14 Dec 2017 11 Jun 2018 19 Dec 2017 11 Jun 2018 21 Dec 2017 TP4/0.2-0.3 SE173782.004 LB138922 13 Dec 2017 14 Dec 2017 11 Jun 2018 19 Dec 2017 11 Jun 2018 21 Dec 2017 TP5/0.2-0.3 SE173782.005 11 Jun 2018 LB138922 13 Dec 2017 14 Dec 2017 19 Dec 2017 11 Jun 2018 21 Dec 2017 TP6/0.2-0.3 SE173782.006 LB138922 13 Dec 2017 14 Dec 2017 11 Jun 2018 19 Dec 2017 11 Jun 2018 21 Dec 2017 TP7/0.2-0.3 SE173782.007 LB138922 13 Dec 2017 14 Dec 2017 11 Jun 2018 19 Dec 2017 11 Jun 2018 21 Dec 2017 S1 SE173782.008 LB138922 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 S2 SE173782.009 LB138922 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 **S**3 SE173782.010 LB138922 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 S4 SE173782.011 LB138922 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 S5 SE173782.012 LB138922 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 S6 SE173782.013 LB138922 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 S7 SE173782.014 LB138922 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 14 Dec 2017 S8 SE173782.015 LB138922 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 S9 SE173782.016 LB138922 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 S10 SE173782.017 LB138922 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 SH1 SE173782.018 LB138939 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 SH2 SE173782.019 LB138939 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 SH3 SE173782.020 LB138939 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 SH4 SE173782.021 LB138939 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 BH10/0.2-0.3 SE173782.024 LB138939 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 BH11/0.2-0.3 SE173782.025 LB138939 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 BH12/0.2-0.3 SE173782.026 14 Dec 2017 12 Jun 2018 LB138939 14 Dec 2017 19 Dec 2017 12 Jun 2018 21 Dec 2017 QC1A SE173782.027 LB138939 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 QC2A SE173782.028 LB138939 14 Dec 2017 14 Dec 2017 12 Jun 2018 19 Dec 2017 12 Jun 2018 21 Dec 2017 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-IENVIAN403 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analvsis Due Analysed LB138732 24 Jan 2018 TP1/0.5-1.0 SE173782.001 20 Dec 2017 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 TP2/0.3-1.0 SE173782.002 LB138732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 TP3/0.2-0.3 SE173782.003 LB138732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 TP4/0.2-0.3 SE173782.004 LB138732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 TP5/0.2-0.3 SE173782.005 LB138732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 13 Dec 2017 TP6/0 2-0 3 SE173782.006 LB138732 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 TP7/0.2-0.3 SE173782.007 LB138732 13 Dec 2017 14 Dec 2017 27 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 S1 SE173782.008 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 S2 SE173782.009 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 LB138732 S3 SE173782.010 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 S4 SE173782.011 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 S5 SE173782.012 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 S6 SE173782.013 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 **S**7 SE173782.014 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017 20 Dec 2017 S8 SE173782.015 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 S9 SE173782.016 LB138732 14 Dec 2017 14 Dec 2017 28 Dec 2017 15 Dec 2017 24 Jan 2018 20 Dec 2017

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

TRH (Total Recoverable Hydrocarbons) in Soil (continued)

RH (Total Recoverable Hy	drocarbons) in Soil (conti	nued)					Method: I	ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
10	SE173782.017	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	20 Dec 2017
H1	SE173782.018	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	20 Dec 2017
H2	SE173782.019	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	20 Dec 2017
H3	SE173782.020	LB138732	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	20 Dec 2017
H4	SE173782.021	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	20 Dec 2017
H10/0.2-0.3	SE173782.024	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	20 Dec 2017
H11/0.2-0.3	SE173782.025	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	20 Dec 2017
H12/0.2-0.3	SE173782.026	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	20 Dec 2017
C1A	SE173782.027	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	20 Dec 2017
C2A	SE173782.028	LB138733	14 Dec 2017	14 Dec 2017	28 Dec 2017	15 Dec 2017	24 Jan 2018	20 Dec 2017
DC's in Soil							Method: I	ME-(AU)-[ENV]AN
ample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
P1/0.5-1.0	SE173782.001	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
P2/0.3-1.0	SE173782.002	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
P3/0.2-0.3	SE173782.003	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
P4/0.2-0.3	SE173782.004	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
P5/0.2-0.3	SE173782.005	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
P6/0.2-0.3	SE173782.006	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
P7/0.2-0.3	SE173782.007	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
:1	SE173782.008	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
2	SE173782.009	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
3	SE173782.010	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
4	SE173782.011	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
5	SE173782.012	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
6	SE173782.013	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
7	SE173782.014	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
8	SE173782.015	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
9	SE173782.016	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
:10	SE173782.017	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
H1	SE173782.018	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
H2	SE173782.019	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
H3	SE173782.020	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
H4	SE173782.021	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
H10/0.2-0.3	SE173782.024	LB138845	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	21 Dec 2017
H11/0.2-0.3	SE173782.025	LB138845	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	21 Dec 2017
H12/0.2-0.3	SE173782.026	LB138845	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	21 Dec 2017
C1A	SE173782.027	LB138845	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	21 Dec 2017
C2A	SE173782.028	LB138845	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	21 Dec 2017

Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
TP1/0.5-1.0	SE173782.001	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
TP2/0.3-1.0	SE173782.002	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
TP3/0.2-0.3	SE173782.003	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
TP4/0.2-0.3	SE173782.004	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
TP5/0.2-0.3	SE173782.005	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
TP6/0.2-0.3	SE173782.006	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
TP7/0.2-0.3	SE173782.007	LB138842	13 Dec 2017	14 Dec 2017	27 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
S1	SE173782.008	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
S2	SE173782.009	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
S3	SE173782.010	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
S4	SE173782.011	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
S5	SE173782.012	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
S6	SE173782.013	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
S7	SE173782.014	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
S8	SE173782.015	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
S9	SE173782.016	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
S10	SE173782.017	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
SH1	SE173782.018	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017
SH2	SE173782.019	LB138842	14 Dec 2017	14 Dec 2017	28 Dec 2017	18 Dec 2017	27 Jan 2018	20 Dec 2017

HOLDING TIME SUMMARY

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed SH3 SE173782.020 LB138842 14 Dec 2017 14 Dec 2017 28 Dec 2017 18 Dec 2017 27 Jan 2018 20 Dec 2017 SH4 SE173782.021 LB138842 14 Dec 2017 14 Dec 2017 28 Dec 2017 18 Dec 2017 27 Jan 2018 20 Dec 2017 BH10/0.2-0.3 SE173782.024 LB138845 14 Dec 2017 14 Dec 2017 28 Dec 2017 18 Dec 2017 27 Jan 2018 21 Dec 2017 BH11/0.2-0.3 SE173782.025 LB138845 14 Dec 2017 14 Dec 2017 28 Dec 2017 18 Dec 2017 27 Jan 2018 21 Dec 2017 BH12/0.2-0.3 SE173782.026 LB138845 14 Dec 2017 14 Dec 2017 28 Dec 2017 18 Dec 2017 27 Jan 2018 21 Dec 2017 QC1A SE173782.027 LB138845 14 Dec 2017 14 Dec 2017 28 Dec 2017 18 Dec 2017 27 Jan 2018 21 Dec 2017 QC2A SE173782.028 LB138845 14 Dec 2017 14 Dec 2017 28 Dec 2017 18 Dec 2017 27 Jan 2018 21 Dec 2017

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

C Pesticides in Soil				Method: M	E-(AU)-[ENV]AI
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	TP1/0.5-1.0	SE173782.001	%	60 - 130%	105
····· , ··· , ··· , ··· , ··· ,	TP2/0.3-1.0	SE173782.002	%	60 - 130%	103
	TP3/0.2-0.3	SE173782.003	%	60 - 130%	98
	TP4/0.2-0.3	SE173782.004	%	60 - 130%	101
	TP5/0.2-0.3	SE173782.005	%	60 - 130%	99
	TP6/0.2-0.3	SE173782.005	%		
				60 - 130%	97
	TP7/0.2-0.3	SE173782.007	%	60 - 130%	97
	<u>S1</u>	SE173782.008	%	60 - 130%	101
	<u>S3</u>	SE173782.010	%	60 - 130%	91
	S5	SE173782.012	%	60 - 130%	93
	S7	SE173782.014	%	60 - 130%	98
	S8	SE173782.015	%	60 - 130%	106
	S9	SE173782.016	%	60 - 130%	98
	SH1	SE173782.018	%	60 - 130%	91
	SH2	SE173782.019	%	60 - 130%	97
	SH3	SE173782.020	%	60 - 130%	110
	SH4	SE173782.021	%	60 - 130%	108
	BH10/0.2-0.3	SE173782.024	%	60 - 130%	110
	BH11/0.2-0.3	SE173782.025	%	60 - 130%	102
	BH12/0.2-0.3	SE173782.026	%	60 - 130%	106
	QC1A	SE173782.027	%	60 - 130%	109
P Pesticides in Soil	aon		,0		
	O sucche Name	O-maile Number	1114		E-(AU)-[ENV]/
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	TP1/0.5-1.0	SE173782.001	%	60 - 130%	98
	TP2/0.3-1.0	SE173782.002	%	60 - 130%	92
	TP3/0.2-0.3	SE173782.003	%	60 - 130%	94
	TP4/0.2-0.3	SE173782.004	%	60 - 130%	94
	TP5/0.2-0.3	SE173782.005	%	60 - 130%	92
	TP6/0.2-0.3	SE173782.006	%	60 - 130%	90
	TP7/0.2-0.3	SE173782.007	%	60 - 130%	92
	S1	SE173782.008	%	60 - 130%	92
	S3	SE173782.010	%	60 - 130%	96
	 S5	SE173782.012	%	60 - 130%	86
	<u> </u>	SE173782.012	%	60 - 130%	88
	<u>S8</u>	SE173782.015	%	60 - 130%	92
	S9	SE173782.016	%	60 - 130%	92
	SH1	SE173782.018	%	60 - 130%	94
	SH2	SE173782.019	%	60 - 130%	94
	SH3	SE173782.020	%	60 - 130%	94
	SH4	SE173782.021	%	60 - 130%	94
	BH10/0.2-0.3	SE173782.024	%	60 - 130%	92
	BH11/0.2-0.3	SE173782.025	%	60 - 130%	100
	BH12/0.2-0.3	SE173782.026	%	60 - 130%	96
	QC1A	SE173782.027	%	60 - 130%	94
114-p-terphenyl (Surrogate)	TP1/0.5-1.0	SE173782.001	%	60 - 130%	98
	TP2/0.3-1.0	SE173782.002	%	60 - 130%	100
	TP3/0.2-0.3	SE173782.003	%	60 - 130%	100
			%		
	TP4/0.2-0.3	SE173782.004		60 - 130%	106
	TP5/0.2-0.3	SE173782.005	%	60 - 130%	100
	TP6/0.2-0.3	SE173782.006	%	60 - 130%	98
			%	60 - 130%	100
	TP7/0.2-0.3	SE173782.007			
	TP7/0.2-0.3 S1	SE173782.007	%	60 - 130%	96
	S1	SE173782.008	%	60 - 130%	96
	S1 S3	SE173782.008 SE173782.010	%	60 - 130% 60 - 130%	96 102
	S1 S3 S5 S7	SE173782.008 SE173782.010 SE173782.012 SE173782.012 SE173782.014	% % %	60 - 130% 60 - 130% 60 - 130% 60 - 130%	96 102 96 96
	S1 S3 S5 S7 S8	SE173782.008 SE173782.010 SE173782.012 SE173782.014 SE173782.015	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	96 102 96 98
	S1 S3 S5 S7 S8 S9	SE173782.008 SE173782.010 SE173782.012 SE173782.014 SE173782.015 SE173782.016	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	96 102 96 98 102
	S1 S3 S5 S7 S8	SE173782.008 SE173782.010 SE173782.012 SE173782.014 SE173782.015	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	96 102 96 96 98

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

OP Pesticides in Soil (continued) Method: ME-(AU)-[ENV]AN420 Recovery % Parameter Criteria Sample Name Sample Numb Units d14-p-terphenyl (Surrogate) SH4 SE173782.021 % 60 - 130% 100 BH10/0.2-0.3 SE173782.024 60 - 130% % 100 BH11/0.2-0.3 SE173782.025 % 60 - 130% 106 BH12/0.2-0.3 SE173782.026 60 - 130% 104 % QC1A SE173782.027 60 - 130% 102 % PAH (Polynuclear Aromatic Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN420 Parameter Criteria Recovery % Sample Nam Sample Numb Units 2-fluorobiphenyl (Surrogate) TP1/0.5-1.0 SE173782.001 70 - 130% 98 % TP2/0.3-1.0 SE173782.002 70 - 130% 92 % TP3/0.2-0.3 SE173782.003 % 70 - 130% 94 TP4/0.2-0.3 SE173782.004 70 - 130% 94 % TP5/0.2-0.3 SE173782.005 70 - 130% 92 % TP6/0.2-0.3 SE173782.006 % 70 - 130% 90 TP7/0.2-0.3 SE173782.007 % 70 - 130% 92 S1 SE173782.008 70 - 130% 92 % S2 SE173782.009 % 70 - 130% 92 S3 SE173782.010 % 70 - 130% 96 S4 SE173782.011 70 - 130% 90 % S5 SE173782.012 % 70 - 130% 86 S6 SE173782.013 % 70 - 130% 88 S7 SE173782.014 70 - 130% 88 % **S**8 SE173782.015 % 70 - 130% 92 S9 SE173782.016 70 - 130% 92 % S10 SE173782.017 % 94 70 - 130% SH1 SE173782.018 % 70 - 130% 94 SH2 SE173782.019 70 - 130% 94 % SH3 94 SE173782.020 % 70 - 130% SH4 SE173782.021 % 70 - 130% 94 BH10/0.2-0.3 SE173782.024 % 70 - 130% 92 BH11/0.2-0.3 SE173782.025 % 70 - 130% 100 BH12/0.2-0.3 SE173782.026 % 70 - 130% 96 QC1A SE173782.027 % 70 - 130% 94 QC2A SE173782.028 % 70 - 130% 96 d14-p-terphenvl (Surrogate) TP1/0.5-1.0 SE173782.001 % 70 - 130% 98 TP2/0.3-1.0 SE173782.002 % 70 - 130% 100 SE173782.003 TP3/0.2-0.3 70 - 130% 102 % TP4/0.2-0.3 SE173782.004 % 70 - 130% 106 TP5/0.2-0.3 SE173782.005 % 70 - 130% 100 TP6/0.2-0.3 SE173782.006 % 70 - 130% 98 TP7/0.2-0.3 SE173782.007 % 70 - 130% 100 S1 SE173782.008 70 - 130% 96 % % S2 100 SE173782.009 70 - 130% **S**3 SE173782.010 % 70 - 130% 102 S4 SE173782.011 70 - 130% 94 % S5 SE173782.012 70 - 130% 96 % S6 SE173782.013 % 70 - 130% 96 S7 SE173782.014 % 70 - 130% 96 S8 SE173782.015 % 70 - 130% 98 S9 SE173782.016 % 70 - 130% 102 S10 SE173782.017 % 70 - 130% 100 SH1 SE173782.018 % 70 - 130% 104 SH2 SE173782.019 % 70 - 130% 102 SH3 SE173782.020 % 70 - 130% 102 SH4 SE173782.021 % 70 - 130% 100 BH10/0.2-0.3 SE173782.024 % 70 - 130% 100 BH11/0.2-0.3 SE173782.025 % 70 - 130% 106 BH12/0.2-0.3 SE173782.026 % 70 - 130% 104 QC1A SE173782.027 % 70 - 130% 102 QC2A SE173782.028 % 70 - 130% 102 TP1/0.5-1.0 SE173782.001 70 - 130% 96 %

d5-nitrobenzene (Surrogate)

Method: ME-(AU)-[ENV]AN420

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued)

Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
5-nitrobenzene (Surrogate)	TP2/0.3-1.0	SE173782.002	%	70 - 130%	88
	TP3/0.2-0.3	SE173782.003	%	70 - 130%	98
	TP4/0.2-0.3	SE173782.004	%	70 - 130%	108
	TP5/0.2-0.3	SE173782.005	%	70 - 130%	100
	TP6/0.2-0.3	SE173782.006	%	70 - 130%	100
	TP7/0.2-0.3	SE173782.007	%	70 - 130%	102
	S1	SE173782.008	%	70 - 130%	102
	S2	SE173782.009	%	70 - 130%	104
	\$3	SE173782.010	%	70 - 130%	110
	S4	SE173782.011	%	70 - 130%	96
	S5	SE173782.012	%	70 - 130%	94
	S6	SE173782.013	%	70 - 130%	96
	S7	SE173782.014	%	70 - 130%	96
	S8	SE173782.015	%	70 - 130%	104
	S9	SE173782.016	%	70 - 130%	104
	S10	SE173782.017	%	70 - 130%	108
	SH1	SE173782.018	%	70 - 130%	108
	SH2	SE173782.019	%	70 - 130%	106
	SH3	SE173782.020	%	70 - 130%	110
	SH4	SE173782.021	%	70 - 130%	96
	BH10/0.2-0.3	SE173782.024	%	70 - 130%	96
	BH11/0.2-0.3	SE173782.025	%	70 - 130%	106
	BH12/0.2-0.3	SE173782.026	%	70 - 130%	104
	QC1A	SE173782.027	%	70 - 130%	100
	QC2A	SE173782.028	%	70 - 130%	104
is in Soil					E-(AU)-[ENV]AI
ameter	Sample Name	Sample Number	Units	Criteria	Recovery
rachloro-m-xylene (TCMX) (Surrogate)	TP1/0.5-1.0	SE173782.001	%	60 - 130%	105
	TP2/0.3-1.0	SE173782.002	%	60 - 130%	103
	TP3/0.2-0.3	SE173782.003	%	60 - 130%	98
	TP4/0.2-0.3	SE173782.004	%	60 - 130%	101
	TP5/0.2-0.3	SE173782.005	%	60 - 130%	99
	TP6/0.2-0.3	SE173782.006	%	60 - 130%	97
	TP7/0.2-0.3	SE173782.007	%	60 - 130%	97
	S1	SE173782.008	%	60 - 130%	101
	S3	SE173782.010	%	60 - 130%	91
	S5	SE173782.012	%	60 - 130%	93
	S7	SE173782.014	%	60 - 130%	98
	S8	SE173782.015	%	60 - 130%	106
	50	0L110102.010	/0	00 - 100 /0	100

SE173782.016

SE173782.018

SE173782.019

SE173782.020

SE173782.021

SE173782.024

SE173782.025

SE173782.026

SE173782.027

Sample Number

SE173782.001

SE173782.002

SE173782.003

SE173782.004

SE173782.005

SE173782.006

SE173782.007

SE173782.008

SE173782.009

SE173782.010

%

%

%

%

%

%

%

%

%

Units

%

%

%

%

%

%

%

%

%

%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

Criteria

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

60 - 130%

98

91

97

110

108

110

102

106

109

Recovery %

72

76

82

76

90

86

72

75

76

76

Method: ME-(AU)-[ENV]AN433

S9

SH1

SH2

SH3

SH4

QC1A

BH10/0.2-0.3

BH11/0.2-0.3

BH12/0.2-0.3

Sample Name

TP1/0.5-1.0

TP2/0.3-1.0

TP3/0.2-0.3

TP4/0.2-0.3

TP5/0.2-0.3

TP6/0.2-0.3

TP7/0.2-0.3

S1

S2

S3

VOC's in Soil

Parameter

Bromofluorobenzene (Surrogate)

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

arameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	S4	SE173782.011	%	60 - 130%	81
	S5	SE173782.012	%	60 - 130%	81
	S6	SE173782.013	%	60 - 130%	73
	<u>S7</u>	SE173782.014	%	60 - 130%	74
	<u>S8</u>	SE173782.015	%	60 - 130%	73
	<u>S9</u>	SE173782.016	%	60 - 130%	76
	S10	SE173782.017	%	60 - 130%	73
	SH1	SE173782.018	%	60 - 130%	85
	SH2	SE173782.019	%	60 - 130%	78
	SH3	SE173782.020	%	60 - 130%	84
	SH4	SE173782.021	%	60 - 130%	81
	BH10/0.2-0.3	SE173782.024	%	60 - 130%	77
	BH11/0.2-0.3	SE173782.025	%	60 - 130%	91
	BH12/0.2-0.3	SE173782.026	%	60 - 130%	98
	QC1A	SE173782.027	%	60 - 130%	80
	QC2A	SE173782.028	%	60 - 130%	87
4-1,2-dichloroethane (Surrogate)	TP1/0.5-1.0	SE173782.001	%	60 - 130%	90
	TP2/0.3-1.0	SE173782.002	%	60 - 130%	73
	TP3/0.2-0.3	SE173782.003	%	60 - 130%	71
	TP4/0.2-0.3	SE173782.004	%	60 - 130%	86
	TP5/0.2-0.3	SE173782.005	%	60 - 130%	75
	TP6/0.2-0.3	SE173782.006	%	60 - 130%	80
	TP7/0.2-0.3	SE173782.007	%	60 - 130%	84
	<u>S1</u>	SE173782.008	%	60 - 130%	88
	<u>S2</u>	SE173782.009	%	60 - 130%	83
	<u>S3</u>	SE173782.010	%	60 - 130%	76
	<u>S4</u>	SE173782.011	%	60 - 130%	91
	<u>S5</u>	SE173782.012	%	60 - 130%	77
	<u>S6</u>	SE173782.013	%	60 - 130%	87
	<u>\$7</u>	SE173782.014	%	60 - 130%	87
	<u>S8</u>	SE173782.015	%	60 - 130%	79
	<u>S9</u>	SE173782.016	%	60 - 130%	76
	<u>S10</u>	SE173782.017	%	60 - 130%	74
	SH1	SE173782.018	%	60 - 130%	83
	SH2	SE173782.019	%	60 - 130%	90
	SH3	SE173782.020	%	60 - 130%	93
	SH4	SE173782.021	%	60 - 130%	96
	BH10/0.2-0.3	SE173782.024	%	60 - 130%	73
	BH11/0.2-0.3	SE173782.025	%	60 - 130%	97
	BH12/0.2-0.3	SE173782.026	%	60 - 130%	102
	QC1A	SE173782.027	%	60 - 130%	77
	QC2A	SE173782.028	%	60 - 130%	104
8-toluene (Surrogate)	TP1/0.5-1.0	SE173782.001	%	60 - 130%	78
	TP2/0.3-1.0	SE173782.002	%	60 - 130%	71
	TP3/0.2-0.3	SE173782.003	%	60 - 130%	72
	TP4/0.2-0.3	SE173782.004	%	60 - 130%	74
	TP5/0.2-0.3	SE173782.005	%	60 - 130%	77
	TP6/0.2-0.3	SE173782.006	%	60 - 130%	74
	TP7/0.2-0.3	SE173782.007	%	60 - 130%	77
	S1	SE173782.008	%	60 - 130%	74
	S2	SE173782.009	%	60 - 130%	83
	S3	SE173782.010	%	60 - 130%	78
	S4	SE173782.011	%	60 - 130%	83
	S5	SE173782.012	%	60 - 130%	79
	S6	SE173782.013	%	60 - 130%	74
	S7	SE173782.014	%	60 - 130%	87
	S8	SE173782.015	%	60 - 130%	75
	S9	SE173782.016	%	60 - 130%	75
	S10	SE173782.017	%	60 - 130%	74
		SE173782.018	%	60 - 130%	77
	SH1				

22/12/2017

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

/OC's in Soil (continued) Parameter	Sample Name	Sample Number	Units	Criteria	E <mark>-(AU)-[ENV]AN</mark> Recovery %
					-
d8-toluene (Surrogate)	SH3	SE173782.020	%	60 - 130%	77
	SH4	SE173782.021	%	60 - 130%	82
	BH10/0.2-0.3	SE173782.024	%	60 - 130%	77
	BH11/0.2-0.3	SE173782.025	%	60 - 130%	74
	BH12/0.2-0.3	SE173782.026	%	60 - 130%	75
	QC1A	SE173782.027	%	60 - 130%	73
	QC2A	SE173782.028	%	60 - 130%	77
Dibromofluoromethane (Surrogate)	TP1/0.5-1.0	SE173782.001	%	60 - 130%	75
	TP2/0.3-1.0	SE173782.002	%	60 - 130%	77
	TP3/0.2-0.3	SE173782.003	%	60 - 130%	70
	TP4/0.2-0.3	SE173782.004	%	60 - 130%	95
	TP5/0.2-0.3	SE173782.005	%	60 - 130%	76
	TP6/0.2-0.3	SE173782.006	%	60 - 130%	84
	TP7/0.2-0.3	SE173782.007	%	60 - 130%	71
	S1	SE173782.008	%	60 - 130%	82
	<u>S2</u>	SE173782.009	%	60 - 130%	84
	<u>S3</u>	SE173782.010	%	60 - 130%	86
	<u>S4</u>	SE173782.011	%	60 - 130%	81
	S5	SE173782.012	%	60 - 130%	77
	<u>S6</u>	SE173782.013	%	60 - 130%	91
	S7	SE173782.014	%	60 - 130%	74
	S8	SE173782.015	%	60 - 130%	84
	S9	SE173782.016	%	60 - 130%	85
	S10	SE173782.017	%	60 - 130%	75
		SE173782.018	%	60 - 130%	74
	SH2	SE173782.019	%	60 - 130%	73
	SH3	SE173782.020	%	60 - 130%	95
	SH4	SE173782.021	%	60 - 130%	83
	BH10/0.2-0.3	SE173782.024	%	60 - 130%	81
	BH11/0.2-0.3	SE173782.025	%	60 - 130%	88
	BH12/0.2-0.3	SE173782.026	%	60 - 130%	86
	QC1A	SE173782.027	%	60 - 130%	77
	QC2A	SE173782.028	%	60 - 130%	90
platile Petroleum Hydrocarbons in Soil				Method: M	E-(AU)-[ENV]A
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	TP1/0.5-1.0	SE173782.001	%	60 - 130%	72
Sionolidolobenzene (Sunogale)					
	TP2/0.3-1.0	SE173782.002	%	60 - 130%	76
	TP3/0.2-0.3	SE173782.003	%	60 - 130%	82
	TP4/0.2-0.3	SE173782.004	%	60 - 130%	76
	TP5/0.2-0.3	SE173782.005	%	60 - 130%	90
	TP5/0.2-0.3 TP6/0.2-0.3	SE173782.005 SE173782.006	%	60 - 130% 60 - 130%	90 86
	TP6/0.2-0.3	SE173782.006	%	60 - 130%	86
	TP6/0.2-0.3 TP7/0.2-0.3	SE173782.006 SE173782.007	%	60 - 130% 60 - 130%	86 72
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2	SE173782.006 SE173782.007 SE173782.008 SE173782.009	% % %	60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 72 75 76
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3	SE173782.006 SE173782.007 SE173782.008 SE173782.009 SE173782.010	% % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 72 75 76 76
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4	SE173782.006 SE173782.007 SE173782.008 SE173782.009 SE173782.010 SE173782.011	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 72 75 76 76 81
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4 S5	SE173782.006 SE173782.007 SE173782.008 SE173782.009 SE173782.010 SE173782.011 SE173782.011	% % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 72 75 76 76 81 81
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4 S5 S6	SE173782.006 SE173782.007 SE173782.008 SE173782.009 SE173782.010 SE173782.011 SE173782.012 SE173782.013	% % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 72 75 76 76 81 81 73
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4 S5 S6 S7	SE173782.006 SE173782.007 SE173782.008 SE173782.009 SE173782.010 SE173782.011 SE173782.012 SE173782.013 SE173782.014	% % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 72 75 76 81 81 73 74
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4 S5 S6 S7 S8	SE173782.006 SE173782.007 SE173782.008 SE173782.009 SE173782.010 SE173782.011 SE173782.012 SE173782.013 SE173782.014 SE173782.015	% % % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 72 75 76 81 81 73 74 73
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4 S5 S6 S7	SE173782.006 SE173782.007 SE173782.008 SE173782.009 SE173782.010 SE173782.011 SE173782.012 SE173782.013 SE173782.014	% % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 72 75 76 81 81 73 74
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4 S5 S6 S7 S8	SE173782.006 SE173782.007 SE173782.008 SE173782.009 SE173782.010 SE173782.011 SE173782.012 SE173782.013 SE173782.014 SE173782.015	% % % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 72 75 76 81 81 73 74 73
	TP6/0.2-0.3 TP7/0.2-0.3 \$1 \$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9	SE173782.006 SE173782.007 SE173782.008 SE173782.009 SE173782.010 SE173782.011 SE173782.012 SE173782.013 SE173782.014 SE173782.015 SE173782.016	% % % % % % %	60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130% 60 - 130%	86 72 75 76 81 81 73 74 73 74
	TP6/0.2-0.3 TP7/0.2-0.3 \$1 \$2 \$3 \$4 \$5 \$6 \$7 \$8 \$9 \$10	SE173782.006 SE173782.007 SE173782.008 SE173782.010 SE173782.011 SE173782.012 SE173782.013 SE173782.014 SE173782.015 SE173782.016 SE173782.017 SE173782.018	% % % % % % % % % %	60 - 130% 60 - 130%	86 72 75 76 76 81 81 73 74 73 74 73 76 73 85
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 SH1 SH2	SE173782.006 SE173782.007 SE173782.008 SE173782.010 SE173782.011 SE173782.012 SE173782.013 SE173782.014 SE173782.015 SE173782.016 SE173782.017 SE173782.018 SE173782.019	% %	60 - 130% 60 - 130%	86 72 75 76 81 81 81 73 74 73 74 73 76 73 85 78
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 SH1 SH2 SH3	SE173782.006 SE173782.007 SE173782.008 SE173782.010 SE173782.011 SE173782.012 SE173782.013 SE173782.014 SE173782.015 SE173782.016 SE173782.017 SE173782.018 SE173782.019 SE173782.020	% %	60 - 130% 60 - 130%	86 72 75 76 81 81 81 73 74 73 74 73 76 73 85 78 84
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 SH1 SH2 SH3 SH4	SE173782.006 SE173782.007 SE173782.008 SE173782.009 SE173782.010 SE173782.011 SE173782.012 SE173782.013 SE173782.014 SE173782.015 SE173782.016 SE173782.017 SE173782.018 SE173782.019 SE173782.020	% %	60 - 130% 60 - 130%	86 72 75 76 81 81 73 74 73 76 73 76 73 85 78 84 84
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 SH1 SH2 SH3 SH4 BH10/0.2-0.3	SE173782.006 SE173782.007 SE173782.008 SE173782.009 SE173782.010 SE173782.011 SE173782.012 SE173782.013 SE173782.014 SE173782.015 SE173782.016 SE173782.017 SE173782.018 SE173782.019 SE173782.020 SE173782.021	% %	60 - 130% 60 - 130%	86 72 75 76 81 81 81 73 74 73 74 73 76 73 85 78 84 81 77
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 SH1 SH2 SH3 SH4 BH10/0.2-0.3 BH11/0.2-0.3	SE173782.006 SE173782.007 SE173782.009 SE173782.010 SE173782.011 SE173782.012 SE173782.013 SE173782.014 SE173782.015 SE173782.016 SE173782.017 SE173782.018 SE173782.019 SE173782.020 SE173782.021 SE173782.021 SE173782.03	% %	60 - 130% 60 - 130%	86 72 75 76 81 81 73 74 73 74 73 76 73 85 78 85 78 84 81 77 91
	TP6/0.2-0.3 TP7/0.2-0.3 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 SH1 SH2 SH3 SH4 BH10/0.2-0.3	SE173782.006 SE173782.007 SE173782.008 SE173782.009 SE173782.010 SE173782.011 SE173782.012 SE173782.013 SE173782.014 SE173782.015 SE173782.016 SE173782.017 SE173782.018 SE173782.019 SE173782.020 SE173782.021	% %	60 - 130% 60 - 130%	86 72 75 76 81 81 73 74 73 74 73 76 73 85 78 85 85 78 84 81 77

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued)

Method: ME-(AU)-[ENV]AN433

rameter	Sample Name	Sample Number	Units	Criteria	Recovery
omofluorobenzene (Surrogate)	QC2A	SE173782.028	%	60 - 130%	87
-1,2-dichloroethane (Surrogate)	TP1/0.5-1.0	SE173782.001	%	60 - 130%	90
	TP2/0.3-1.0	SE173782.002	%	60 - 130%	73
	TP3/0.2-0.3	SE173782.003	%	60 - 130%	71
	TP4/0.2-0.3	SE173782.004	%	60 - 130%	86
	TP5/0.2-0.3	SE173782.005	%	60 - 130%	75
	TP6/0.2-0.3	SE173782.006	%	60 - 130%	80
	TP7/0.2-0.3	SE173782.007	%	60 - 130%	84
	S1	SE173782.008	%	60 - 130%	88
	S2	SE173782.009	%	60 - 130%	83
	S3	SE173782.010	%	60 - 130%	76
	 S4	SE173782.011	%	60 - 130%	91
			%		77
	<u>\$5</u>	SE173782.012		60 - 130%	
	<u>S6</u>	SE173782.013	%	60 - 130%	87
	<u>\$7</u>	SE173782.014	%	60 - 130%	87
	S8	SE173782.015	%	60 - 130%	79
	S9	SE173782.016	%	60 - 130%	76
	S10	SE173782.017	%	60 - 130%	74
	SH1	SE173782.018	%	60 - 130%	83
	SH2	SE173782.019	%	60 - 130%	90
	SH3	SE173782.020	%	60 - 130%	93
	SH4	SE173782.021	%	60 - 130%	96
	BH10/0.2-0.3	SE173782.024	%	60 - 130%	73
	BH11/0.2-0.3	SE173782.025	%	60 - 130%	97
	BH12/0.2-0.3	SE173782.026	%	60 - 130%	102
	QC1A	SE173782.027	%	60 - 130%	77
	QC2A	SE173782.028	%	60 - 130%	104
-toluene (Surrogate)	TP1/0.5-1.0	SE173782.001	%	60 - 130%	78
-coldene (Surrogate)					
	TP2/0.3-1.0	SE173782.002	%	60 - 130%	71
	TP3/0.2-0.3	SE173782.003	%	60 - 130%	72
	TP4/0.2-0.3	SE173782.004	%	60 - 130%	74
	TP5/0.2-0.3	SE173782.005	%	60 - 130%	77
	TP6/0.2-0.3	SE173782.006	%	60 - 130%	74
	TP7/0.2-0.3	SE173782.007	%	60 - 130%	77
	S1	SE173782.008	%	60 - 130%	74
	<u>S2</u>	SE173782.009	%	60 - 130%	83
	S3	SE173782.010	%	60 - 130%	78
	S4	SE173782.011	%	60 - 130%	83
	S5	SE173782.012	%	60 - 130%	79
	S6	SE173782.013	%	60 - 130%	74
	S7	SE173782.014	%	60 - 130%	87
	S8	SE173782.015	%	60 - 130%	75
	<u> </u>	SE173782.016	%	60 - 130%	75
	<u> </u>	SE173782.017	%	60 - 130%	74
	SH1		%	60 - 130%	74
		SE173782.018			
	SH2	SE173782.019	%	60 - 130%	72
	SH3	SE173782.020	%	60 - 130%	77
	SH4	SE173782.021	%	60 - 130%	82
	BH10/0.2-0.3	SE173782.024	%	60 - 130%	77
	BH11/0.2-0.3	SE173782.025	%	60 - 130%	74
	BH12/0.2-0.3	SE173782.026	%	60 - 130%	75
	QC1A	SE173782.027	%	60 - 130%	73
	QC2A	SE173782.028	%	60 - 130%	77
romofluoromethane (Surrogate)	TP1/0.5-1.0	SE173782.001	%	60 - 130%	75
	TP2/0.3-1.0	SE173782.002	%	60 - 130%	77
		SE173782.003	%	60 - 130%	70
	TP3/0.2-0.3				
	TP3/0.2-0.3 TP4/0.2-0.3			60 - 130%	95
	TP4/0.2-0.3	SE173782.004	%	60 - 130% 60 - 130%	95 76
	TP4/0.2-0.3 TP5/0.2-0.3	SE173782.004 SE173782.005	%	60 - 130%	76
	TP4/0.2-0.3	SE173782.004	%		

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Volatile Petroleum Hydrocarbons in Soil (continued) Method: ME-(AU)-[ENV]AN433 Sample Name Units Criteria Recovery % Parameter Sample Number Dibromofluoromethane (Surrogate) S2 SE173782.009 % 60 - 130% 84 S3 SE173782.010 % 60 - 130% 86 S4 SE173782.011 % 60 - 130% 81 S5 SE173782.012 % 60 - 130% 77 S6 SE173782.013 % 60 - 130% 91 **S**7 SE173782.014 % 60 - 130% 74 S8 SE173782.015 % 60 - 130% 84 S9 SE173782.016 60 - 130% 85 % S10 SE173782.017 75 % 60 - 130% SH1 SE173782.018 % 60 - 130% 74 SH2 SE173782.019 60 - 130% 73 % SH3 SE173782.020 % 60 - 130% 95 SH4 SE173782.021 % 60 - 130% 83 BH10/0.2-0.3 SE173782.024 60 - 130% 81 % BH11/0.2-0.3 SE173782.025 % 60 - 130% 88 BH12/0.2-0.3 SE173782.026 % 60 - 130% 86 QC1A SE173782.027 60 - 130% 77 % SE173782.028 QC2A 60 - 130% % 90

Mercury in Soil

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN312

Sample Number	Parameter	Units	LOR	Result
LB138911.001	Mercury	mg/kg	0.05	<0.05
LB139009.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
LB138732.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan		0.2	<0.2
			mg/kg		
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	_	93
B138733.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
3138733.001		Alpha BHC	mg/kg	0.1	<0.1
		Lindane		0.1	<0.1
			mg/kg	0.1	<0.1
		Heptachlor	mg/kg		
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex		0.1	<0.1
	Surrogotos		mg/kg	- 0.1	
Destisides in Ori	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%		93
P Pesticides in Soil		Devenue for			od: ME-(AU)-[ENV]A
ample Number		Parameter	Units	LOR	Result
3138732.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2

Malathion

<0.2

0.2

mg/kg

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

OP Pesticides in Soil (continued)

OP Pesticides in Soil ((continued)			Meth	od: ME-(AU)-[ENV]
Sample Number		Parameter	Units	LOR	Result
LB138732.001		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	94
		d14-p-terphenyl (Surrogate)	%	-	100
B138733.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2
		Methidathion	mg/kg	0.5	<0.5
		Ethion	mg/kg	0.2	<0.2
		Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Surrogates	2-fluorobiphenyl (Surrogate)	%	-	106
		d14-p-terphenyl (Surrogate)	%	-	112
PAH (Polynuclear Aro	Surrogates matic Hydrocarbons) in Soil	d14-p-terphenyl (Surrogate)			

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

Sample Number		Parameter	Units	LOR	Result
LB138732.001		Naphthalene	mg/kg	0.1	<0.1
20100102.001		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
	Surrogates 33.001	Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		Total PAH (18)	mg/kg	0.8	<0.8
	Surrogates	d5-nitrobenzene (Surrogate)	%	-	104
	Gunogates	2-fluorobiphenyl (Surrogate)	%	-	94
		d14-p-terphenyl (Surrogate)	%	-	100
LB138733.001		Naphthalene	mg/kg	0.1	<0.1
25100100.001		2-methylnaphthalene	mg/kg	0.1	<0.1
		1-methylnaphthalene	mg/kg	0.1	<0.1
		Acenaphthylene	mg/kg	0.1	<0.1
		Acenaphthene	mg/kg	0.1	<0.1
		Fluorene	mg/kg	0.1	<0.1
		Phenanthrene	mg/kg	0.1	<0.1
		Anthracene	mg/kg	0.1	<0.1
		Fluoranthene	mg/kg	0.1	<0.1
		Pyrene	mg/kg	0.1	<0.1
		Benzo(a)anthracene	mg/kg	0.1	<0.1
		Chrysene	mg/kg	0.1	<0.1
		Benzo(a)pyrene	mg/kg	0.1	<0.1
		Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1
		Dibenzo(ah)anthracene	mg/kg	0.1	<0.1
		Benzo(ghi)perylene	mg/kg	0.1	<0.1
		201120/grill/polytono	mg/kg	0.8	<0.8

METHOD BLANKS

SE173782 R0

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 Sample Number Parameter LOR Result LB138733.001 Surrogates d5-nitrobenzene (Surrogate) % 116 2-fluorobiphenyl (Surrogate) % 106 112 d14-p-terphenyl (Surrogate) % Method: ME-(AU)-[ENV]AN420 PCBs in Soil Sample Number Parameter Units LOR Result LB138732.001 Arochlor 1016 <0.2 mg/kg 0.2 Arochlor 1221 <0.2 0.2 mg/kg Arochlor 1232 mg/kg 02 <0.2 Arochlor 1242 mg/kg 0.2 <0.2 Arochlor 1248 <0.2 0.2 mg/kg Arochlor 1254 mg/kg 0.2 <0.2 Arochlor 1260 mg/kg 0.2 <0.2 Arochlor 1262 0.2 <0.2 mg/kg Arochlor 1268 mg/kg 0.2 < 0.2 Total PCBs (Arochlors) mg/kg 1 <1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) 93 % LB138733.001 Arochlor 1016 mg/kg 0.2 < 0.2 Arochlor 1221 0.2 <0.2 mg/kg Arochlor 1232 0.2 <0.2 mg/kg Arochlor 1242 mg/kg 0.2 < 0.2 Arochlor 1248 mg/kg 0.2 <0.2 Arochlor 1254 <0.2 0.2 mg/kg Arochlor 1260 mg/kg 0.2 < 0.2 0.2 <0.2 Arochlor 1262 mg/kg Arochlor 1268 0.2 <0.2 mg/kg Total PCBs (Arochlors) mg/kg 1 <1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) % 93 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 Sample Number Parameter Units LOR Result LB138922.001 Arsenic, As mg/kg 3 <3 Cadmium, Cd 0.3 < 0.3 mg/kg < 0.3 Chromium, Cr mg/kg 0.3 Copper, Cu mg/kg 0.5 <0.5 Lead, Pb <1 mg/kg 1 Nickel, Ni 0.5 <0.5 mg/kg Zinc, Zn mg/kg 0.5 < 0.5 LB138939.001 <3 Arsenic, As mg/kg 3 <0.3 Cadmium, Cd 0.3 mg/kg Chromium Cr mg/kg 0.3 <0.3 Copper, Cu 0.5 <0.5 mg/kg Lead, Pb <1 mg/kg 1 Nickel, Ni mg/kg 0.5 <0.5 Zinc, Zn mg/kg 0.5 <0.5 TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Sample Number LOR Result Units Parameter LB138732.001 TRH C10-C14 mg/kg 20 <20 TRH C15-C28 45 <45 mg/kg TRH C29-C36 <45 mg/kg 45 mg/kg TRH C37-C40 100 <100 TRH C10-C36 Total 110 <110 mg/kg LB138733.001 TRH C10-C14 mg/kg 20 <20 mg/kg TRH C15-C28 45 <45 45 <45 TRH C29-C36 mg/kg TRH C37-C40 mg/kg 100 <100 TRH C10-C36 Total 110 <110 mg/kg VOC's in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

VOC's in Soil (continued)

/OC's in Soil (continue	d)			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
_B138842.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	70
		d4-1,2-dichloroethane (Surrogate)	%	-	73
		d8-toluene (Surrogate)	%	-	78
		Bromofluorobenzene (Surrogate)	%	-	86
	Totals	Total BTEX	mg/kg	0.6	<0.6
_B138845.001	Monocyclic Aromatic	Benzene	mg/kg	0.1	<0.1
	Hydrocarbons	Toluene	mg/kg	0.1	<0.1
		Ethylbenzene	mg/kg	0.1	<0.1
		m/p-xylene	mg/kg	0.2	<0.2
		o-xylene	mg/kg	0.1	<0.1
	Polycyclic VOCs	Naphthalene	mg/kg	0.1	<0.1
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	86
		d4-1,2-dichloroethane (Surrogate)	%	-	89
		d8-toluene (Surrogate)	%	-	84
		Bromofluorobenzene (Surrogate)	%	-	93
	Totals	Total BTEX	mg/kg	0.6	<0.6
olatile Petroleum Hydr	rocarbons in Soil			Meth	od: ME-(AU)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result
B138842.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	70
		d4-1,2-dichloroethane (Surrogate)	%	-	73
		d8-toluene (Surrogate)	%	-	78
B138845.001		TRH C6-C9	mg/kg	20	<20
	Surrogates	Dibromofluoromethane (Surrogate)	%	-	86
		d4-1,2-dichloroethane (Surrogate)	%	-	89
		d8-toluene (Surrogate)	%	-	84

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil

Mercury in Soil	ercury in Soil Method: ME-(AU)-[ENV]AN312							
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE173782.010	LB138911.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE173782.019	LB138911.024	Mercury	mg/kg	0.05	0.08	0.10	85	15
SE173782.026	LB139009.014	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE173782.028	LB139009.017	Mercury	mg/kg	0.05	0.08	0.07	95	10
Moisture Content						Meth	od: ME-(AU)-	ENVJAN002
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE173782.006	LB138848.011	% Moisture	%w/w	0.5	7.8	7.7	43	2
SE173782.016	LB138848.022	% Moisture	%w/w	0.5	13	12	38	6
SE173782.028	LB138848.033	% Moisture	%w/w	0.5	12	12	39	0

02110102.020	22100010.000								-
OC Pesticides in Se	oil						Met	nod: ME-(AU)-	ENVJAN42
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE173782.010	LB138732.014		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
		-	Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	30	7
SE173782.020	LB138732.025		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1		
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1 <0.1	<0.1	200	0
			o,p-DDE Alpha Endosulfan	mg/kg mg/kg	0.1	<0.1	<0.1	200	0
			Aipna Endosuiran Gamma Chlordane	mg/kg mg/kg	0.2	<0.2	<0.2	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE		0.1	<0.1	<0.1	200	0
			p;p-DDE Dieldrin	mg/kg mg/kg	0.1	<0.1	<0.1	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.2	<0.2	<0.2	200	0
				iiig/kg	0.1			200	
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Duplicate		Parameter	Units	LOR	Original	Duplic <u>ate</u>	Criteria %	RPD %
SE173782.020	LB138732.025		p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.17	0.15	30	7
SE173782.027	LB138733.018		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.16	0.14	30	19

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE173782.010	LB138732.014		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	0
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
SE173782.020	LB138732.025		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	0
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	0
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	0
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	0
			Malathion	mg/kg	0.2	<0.2	<0.2	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

OP Pesticides in S	continued)						Mett	hod: ME-(AU)-	IENVIAN42
Original	Duplicate		Parameter	Units	LOR	Original		Criteria %	· ·
SE173782.020	LB138732.025		Chlorpyrifos (Chlorpyrifos Ethyl)		0.2	<0.2	<0.2	200	0
SE173762.020	LD130732.025			mg/kg	0.2	<0.2	<0.2	200	0
			Parathion-ethyl (Parathion)	mg/kg					0
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	0
			Ethion	mg/kg	0.2	<0.2	<0.2	200	0
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	0
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	0
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	0
PAH (Polynuclear	Aromatic Hydrocarb	ons) in Soil					Mett	hod: ME-(AU)-	[ENV]AN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE173782.010	LB138732.014		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
					0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg					
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	0
					0.2	<0.2	<0.2	175	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td></td><td></td><td></td><td></td><td></td></lor=lor>	TEQ (mg/kg)					
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.6	0.5	30	8
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
SE173782.020	LB138732.025		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Chrysene		0.1	<0.1	<0.1	200	0
				mg/kg					0
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	0
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	0
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td>0</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	0
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.6	0.6	30	4
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
						5.5	3.0		-

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Duplicate	ons) in Soil (continu	Parameter	Units	LOR	Original		od: ME-(AU)- Criteria %	RPD
SE173782.020	LB138732.025	Surrogates			-	0.5	0.5	30	0
E173792.020	LB138733.014	Sunogales	d14-p-terphenyl (Surrogate)	mg/kg	0.1	<0.1	<0.1	200	0
E1/3/92.011	LD130733.014		Naphthalene	mg/kg					
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	0
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	0
			Phenanthrene	mg/kg	0.1	<0.1	<0.1	200	0
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Fluoranthene	mg/kg	0.1	<0.1	0.1	135	0
			Pyrene	mg/kg	0.1	0.1	0.1	117	9
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	148	0
			Chrysene	mg/kg	0.1	<0.1	<0.1	184	0
			Benzo(b&j)fluoranthene	mg/kg	0.1	0.2	0.2	83	32
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(a)pyrene	mg/kg	0.1	0.1	0.2	104	37
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	0.1	0.2	99	34
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	0
			Benzo(ghi)perylene	mg/kg	0.1	0.1	0.1	117	20
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.2</td><td>133</td><td>1</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	0.2	133	1
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td>0.3</td><td>116</td><td>4</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	0.3	116	4
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td>0.3</td><td>100</td><td>2</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	0.3	100	2
			Total PAH (18)	mg/kg	0.8	<0.8	0.9	149	1:
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	30	4
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	4
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	30	2
CBs in Soil							Meth	od: ME-(AU)-	[ENV]A
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE173782.010	LB138732.014		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242		0.2	<0.2	<0.2	200	0
				mg/kg					0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	7
SE173782.020	LB138732.025		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	0
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	0
			Total PCBs (Arochlors)		1	<0.2	<0.2	200	0
		Current-		mg/kg					7
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	
tal Recoverable	Elements in Soil/Wa	ste Solids/Material	s by ICPOES				Method: ME	-(AU)-[ENV]A	N040/A
riginal	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPI
E173782.008	LB138922.014		Arsenic, As	mg/kg	3	20	16	36	2
			Cadmium, Cd	mg/kg	0.3	0.8	0.7	73	
			Chromium, Cr	mg/kg	0.3	16	14	33	1.
			Copper, Cu	mg/kg	0.5	28	32	32	12
			Lead, Pb	mg/kg	1	73	58	32	2
			Nickel, Ni	mg/kg	0.5	8.3	7.5	36	9
			Zinc, Zn	mg/kg	0.5	150	290	31	64

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

SE173782.021	LB138842.030	Monocyclic	Benzene	mg/kg	0.0	<0.0	<0.1	200	0
		IUIdis	Total BTEX	mg/kg	0.3	<0.3	<0.3	200	0
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	4
			Bromofluorobenzene (Surrogate)	mg/kg		3.9	3.7	50	4
			d8-toluene (Surrogate)	mg/kg		3.0	4.2	50	10
		Sunoyates	d4-1,2-dichloroethane (Surrogate)	mg/kg		4.3 3.8	4.2	50	19
		Polycyclic Surrogates	Dibromofluoromethane (Surrogate)	mg/kg mg/kg	- 0.1	4.3	3.5	200	19
		Polycyclic	o-xylene Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic		mg/kg			<0.1	200	0
SE173782.010	LB138842.015	Monocyclic	Benzene Toluene	mg/kg	0.1	<0.1	<0.1	200	0
-		Monoguelia							
Driginal	Duplicate	_	Parameter	Units	LOR	Original	Duplicate		RPD
OC's in Soil							Meth	od: ME-(AU)-	
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
SE173792.011	LB138733.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
SE173782.020	LB138732.025		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
02110102.010	20100102.014		TRH C15-C28	mg/kg	45	<45	<45	200	0
SE173782.010	LB138732.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
Original	Duplicate	, 	Parameter	Units	LOR	Original		Criteria %	RPD
RH (Total Recove	erable Hydrocarbons) in Soil					Meth	od: ME-(AU)-	IENVIA
			Zinc, Zn	mg/kg	0.5	120	96	32	19
			Nickel, Ni	mg/kg	0.5	3.8	3.5	44	7
			Lead, Pb	mg/kg	1	66	65	32	2
			Copper, Cu	mg/kg	0.5	6.9	7.3	37	6
			Chromium, Cr	mg/kg	0.3	37	36	31	5
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	151	0
SE173782.028	LB138939.013		Arsenic, As	mg/kg	3	6	5	47	20
			Zinc, Zn	mg/kg	0.5	510	380	30	28
			Nickel, Ni	mg/kg	0.5	8.4	7.1	36	17
			Lead, Pb	mg/kg	1	350	250	30	33 @
			Copper, Cu	mg/kg mg/kg	0.5	35	27	31	23
	LB138922.024		Cadmium, Cd Chromium, Cr	mg/kg	0.3	1.1 81	1.0	59 31	5 25
5E1/3/82.01/			O de desiderationes a de d	and the second sec	~ ~ ~		10	50	
Driginal E173782.017	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE173782.021	LB138842.030	Monocyclic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
52110102.021	20100042.000	Aromatic	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
		, and the second s	m/p-xylene	mg/kg	0.1	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.2	<0.2	<0.2	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg		4.1	4.0	50	3
		ounogates	d4-1,2-dichloroethane (Surrogate)	mg/kg	_	4.8	3.6	50	28
			d8-toluene (Surrogate)	mg/kg	-	4.1	5.2	50	23
			Bromofluorobenzene (Surrogate)	mg/kg		4.1	3.9	50	5
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
		TOLAIS	Total BTEX		0.6	<0.5	<0.5	200	0
SE173782.024	LB138845.014	Managualia	Benzene	mg/kg	0.0	<0.0	<0.0	200	0
5E1/3/62.024	LD130045.014	Monocyclic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
		Dahavalia	o-xylene	mg/kg					
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg		4.1	3.8	50	8
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.6	4.2	50	13
			d8-toluene (Surrogate)	mg/kg	-	3.8	4.0	50	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.9	4.5	50	14
		Totals	Total Xylenes	mg/kg	0.3	< 0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
SE173792.014	LB138845.024	Monocyclic	Benzene	mg/kg	0.1	<0.1	<0.1	200	0
		Aromatic	Toluene	mg/kg	0.1	<0.1	<0.1	200	0
			Ethylbenzene	mg/kg	0.1	<0.1	<0.1	200	0
			m/p-xylene	mg/kg	0.2	<0.2	<0.2	200	0
			o-xylene	mg/kg	0.1	<0.1	<0.1	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.5	4.4	50	23
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.9	5.0	50	24
			d8-toluene (Surrogate)	mg/kg	-	3.7	4.0	50	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	4.9	50	16
		Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
olatile Petroleum	Hydrocarbons in Soil						Mett	hod: ME-(AU)-	(ENV)A
Driginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD
SE173782.010	LB138842.015		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	ma/ka		43	3.5	30	19

			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.3	3.5	30	19
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.8	4.2	30	10
			d8-toluene (Surrogate)	mg/kg	-	3.9	4.0	30	1
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.8	3.7	30	4
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE173782.021	LB138842.030		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	4.0	30	3
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.8	3.6	30	28
			d8-toluene (Surrogate)	mg/kg	-	4.1	5.2	30	23
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.1	3.9	30	5
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE173782.024	LB138845.014		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	3.8	30	8
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.6	4.2	30	13
			d8-toluene (Surrogate)	mg/kg	-	3.8	4.0	30	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.9	4.5	30	14
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

olatile Petroleum	Hydrocarbons in Sol	l (continued)					Meth	od: ME-(AU)-	(ENVJAN4
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE173782.024	LB138845.014	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0
SE173792.014	LB138845.024		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.5	4.4	30	23
		Ŭ	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.9	5.0	30	24
			d8-toluene (Surrogate)	mg/kg	-	3.7	4.0	30	6
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	4.9	30	16
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Method: ME-(AU)-[ENV]AN312 Mercury in Soil Sample Numb Expected Criteria % Recovery % Parameter Units LOR Result LB138911.002 0.05 70 - 130 Mercury mg/kg 0.20 0.2 102 LB139009.002 Mercury mg/kg 0.05 0.17 0.2 70 - 130 87

DC Pesticides in S	oil					N	lethod: ME-(A	U)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB138732.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	92
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	89
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	92
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	81
		Endrin	mg/kg	0.2	<0.2	0.2	60 - 140	88
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	88
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	96
LB138733.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	112
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	97
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	107
		Dieldrin	mg/kg	0.2	0.2	0.2	60 - 140	101
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	105
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	104
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	40 - 130	101
OP Pesticides in Se Sample Number	OI	Parameter	Units	LOR	Result	Expected	Nethod: ME-(A Criteria %	U)-[ENV]AN Recovery
LB138732.002		Dichlorvos	mg/kg	0.5	2.0	2	60 - 140	99
		Diazinon (Dimpylate)	mg/kg	0.5	2.1	2	60 - 140	104
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	2	60 - 140	87
		Ethion	mg/kg	0.2	1.5	2	60 - 140	76
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
LB138733.002		Dichlorvos	mg/kg	0.5	2.5	2	60 - 140	123
		Diazinon (Dimpylate)	mg/kg	0.5	2.2	2	60 - 140	111
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	2.3	2	60 - 140	116
		Ethion	mg/kg	0.2	2.1	2	60 - 140	105
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94
AH (Polynuclear	Aromatic Hydroca	arbons) in Soil				N	lethod: ME-(A	U)-[ENV]AN
All (Loighdoloal)								
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery

Cample Number		i alalletel	Unita	LOIN	Result	Expected	Onterna /0	Recovery
LB138732.002		Naphthalene	mg/kg	0.1	3.8	4	60 - 140	94
		Acenaphthylene	mg/kg	0.1	3.9	4	60 - 140	96
		Acenaphthene	mg/kg	0.1	3.8	4	60 - 140	96
		Phenanthrene	mg/kg	0.1	3.8	4	60 - 140	95
		Anthracene	mg/kg	0.1	4.0	4	60 - 140	100
		Fluoranthene	mg/kg	0.1	4.1	4	60 - 140	102
		Pyrene	mg/kg	0.1	3.9	4	60 - 140	97
		Benzo(a)pyrene	mg/kg	0.1	4.9	4	60 - 140	122
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	84
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	88
		d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	90
LB138733.002		Naphthalene	mg/kg	0.1	3.7	4	60 - 140	92
		Acenaphthylene	mg/kg	0.1	3.9	4	60 - 140	98
		Acenaphthene	mg/kg	0.1	3.7	4	60 - 140	91
		Phenanthrene	mg/kg	0.1	3.5	4	60 - 140	88
		Anthracene	mg/kg	0.1	3.7	4	60 - 140	94
		Fluoranthene	mg/kg	0.1	3.9	4	60 - 140	99
		Pyrene	mg/kg	0.1	3.6	4	60 - 140	90
		Benzo(a)pyrene	mg/kg	0.1	4.2	4	60 - 140	104
	Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	94
		2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	40 - 130	92
		d14-p-terphenyl (Surrogate)	mg/kg	_	0.5	0.5	40 - 130	94

PCBs in Soil

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PCBs in Soil (continued)

Method	ME-(AU)-[ENV]AN420
--------	--------------------

Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB138732.002	Arochlor 1260	mg/kg	0.2	0.3	0.4	60 - 140	85
LB138733.002	Arochlor 1260	mg/kg	0.2	0.3	0.4	60 - 140	85

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable Elements in							od: ME-(AU)-[ENV]AN040/AN3		
Sample Number	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %		
LB138922.002	Arsenic, As	mg/kg	3	51	50	80 - 120	101		
	Cadmium, Cd	mg/kg	0.3	51	50	80 - 120	103		
	Chromium, Cr	mg/kg	0.3	49	50	80 - 120	99		
	Copper, Cu	mg/kg	0.5	50	50	80 - 120	99		
	Lead, Pb	mg/kg	1	51	50	80 - 120	101		
	Nickel, Ni	mg/kg	0.5	50	50	80 - 120	100		
	Zinc, Zn	mg/kg	0.5	49	50	80 - 120	98		
LB138939.002	Arsenic, As	mg/kg	3	51	50	80 - 120	102		
	Cadmium, Cd	mg/kg	0.3	51	50	80 - 120	101		
	Chromium, Cr	mg/kg	0.3	49	50	80 - 120	98		
	Copper, Cu	mg/kg	0.5	51	50	80 - 120	101		
	Lead, Pb	mg/kg	1	50	50	80 - 120	100		
	Nickel, Ni	mg/kg	0.5	50	50	80 - 120	100		
	Zinc, Zn	mg/kg	0.5	50	50	80 - 120	100		

1101 (10001100010								
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB138732.002		TRH C10-C14	mg/kg	20	35	40	60 - 140	88
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	88
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	70
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	35	40	60 - 140	88
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	78
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	75
LB138733.002		TRH C10-C14	mg/kg	20	29	40	60 - 140	73
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	68
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	75
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	28	40	60 - 140	70
		TRH >C16-C34 (F3)	mg/kg	90	<90	40	60 - 140	73
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	75

VOC's in Soil

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
LB138842.002	Monocyclic	Benzene	mg/kg	0.1	2.1	2.9	60 - 140	73
	Aromatic	Toluene	mg/kg	0.1	1.9	2.9	60 - 140	67
		Ethylbenzene	mg/kg	0.1	2.0	2.9	60 - 140	69
		m/p-xylene	mg/kg	0.2	4.5	5.8	60 - 140	77
		o-xylene	mg/kg	0.1	2.1	2.9	60 - 140	72
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	5	60 - 140	75
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	5	60 - 140	89
		d8-toluene (Surrogate)	mg/kg	-	3.6	5	60 - 140	71
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
LB138845.002	Monocyclic	Benzene	mg/kg	0.1	2.0	2.9	60 - 140	67
	Aromatic	Toluene	mg/kg	0.1	2.1	2.9	60 - 140	71
		Ethylbenzene	mg/kg	0.1	2.0	2.9	60 - 140	67
		m/p-xylene	mg/kg	0.2	4.2	5.8	60 - 140	72
		o-xylene	mg/kg	0.1	1.9	2.9	60 - 140	67
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	5	60 - 140	78
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
		d8-toluene (Surrogate)	mg/kg	-	4.1	5	60 - 140	82
		Bromofluorobenzene (Surrogate)	mg/kg	-	3.8	5	60 - 140	75

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB138842.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	87
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	86
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	5	60 - 140	75
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.5	5	60 - 140	89

Method: ME-(ALI)-JENVJAN433

Method: ME-(AU)-[ENV]AN433

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Volatile Petroleum Hydrocarbons in Soil (continued)

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB138842.002	Surrogates	d8-toluene (Surrogate)	mg/kg	-	3.6	5	60 - 140	71
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	124
LB138845.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	85
		TRH C6-C9	mg/kg	20	<20	23.2	60 - 140	79
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	5	60 - 140	78
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	5	60 - 140	84
		d8-toluene (Surrogate)	mg/kg	-	4.1	5	60 - 140	82
		Bromofluorobenzene (Surrogate)	mg/kg	-	3.8	5	60 - 140	75
	VPH F Bands	TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	7.25	60 - 140	124

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Method: ME-(AU)-[ENV]AN312

Mercury in Soil	Mercury in Soil Method: ME-(AU)-[ENV]							J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE173782.001	LB138911.004	Mercury	mg/kg	0.05	0.22	<0.05	0.2	95
SE173909.001	LB139009.004	Mercury	mg/kg	0.05	0.12	<0.01	0.2	56 ④

DC Pesticides in QC Sample			Poromotor	Unite	LOD-	Docult		nod: ME-(AU	
	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
E173782.001	LB138732.026		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	101
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	94
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	100
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	87
			Endrin	mg/kg	0.2	<0.2	<0.2	0.2	96
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	106
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
			Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.16	-	102
Pesticides in	Soil						Mett	nod: ME-(AL	J)-[ENV]AN
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E173782.001	LB138732.026		Dichlorvos	mg/kg	0.5	1.8	<0.5	2	91
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	_
			Diazinon (Dimpylate)	mg/kg	0.5	2.1	<0.5	2	106
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.8	<0.2	2	91
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	_	
			Methidathion	mg/kg	0.5	<0.5	<0.5	-	_
			Ethion		0.2	1.6	<0.2	2	78
			Azinphos-methyl (Guthion)	mg/kg mg/kg	0.2	<0.2	<0.2	-	
					1.7	7.3	<1.7	-	-
		Surrogates	Total OP Pesticides*	mg/kg	1.7	0.4	0.5	-	- 88
		ourrogates	2-fluorobiphenyl (Surrogate)	mg/kg		0.4	0.5	-	90
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5			
	r Aromatic Hydrocarbo	ons) in Soll				_		nod: ME-(AU	
C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
			Naphthalene	mg/kg	0.1	3.7	<0.1	4	92
	LB138732.026								
	LB138732.026		2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
	LB138732.026		2-methylnaphthalene 1-methylnaphthalene	mg/kg mg/kg	0.1	<0.1 <0.1	<0.1 <0.1	-	-
-	LB138732.026								
E173782.001	LB138/32.026		1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-

mg/kg

mg/kg

0.1

0.1

<0.1

3.7

<0.1

<0.1

Fluorene

Phenanthrene

91

4

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

C Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
173782.001	LB138732.026		Anthracene	mg/kg	0.1	3.8	<0.1	4	96
110102.001	20100102.020		Fluoranthene	mg/kg	0.1	4.0	<0.1	4	100
			Pyrene	mg/kg	0.1	3.6	<0.1	4	91
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
						<0.1	<0.1	-	
			Chrysene Benzo(b&j)fluoranthene	mg/kg mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene		0.1	<0.1	<0.1	-	
				mg/kg	0.1	4.4	<0.1	4	109
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	-	- 109
			Indeno(1,2,3-cd)pyrene	mg/kg		<0.1	<0.1	-	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1		-	
			Benzo(ghi)perylene	mg/kg	0.1		<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.4</td><td><0.2</td><td>-</td><td></td></lor=0<>	TEQ (mg/kg)	0.2	4.4	<0.2	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>4.5</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	4.5	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.4</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.4	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	31	<0.8	-	-
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.5	-	84
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	-	88
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	90
173782.024	LB138733.017		Naphthalene	mg/kg	0.1	3.8	<0.1	4	94
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	-	-
			Acenaphthylene	mg/kg	0.1	4.1	<0.1	4	10
			Acenaphthene	mg/kg	0.1	3.7	<0.1	4	94
			Fluorene	mg/kg	0.1	<0.1	<0.1	-	-
			Phenanthrene	mg/kg	0.1	3.7	<0.1	4	93
			Anthracene	mg/kg	0.1	4.0	<0.1	4	99
			Fluoranthene	mg/kg	0.1	4.1	<0.1	4	10
			Pyrene	mg/kg	0.1	3.9	<0.1	4	96
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	4.2	<0.1	4	10-
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1		
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1		_
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td></td><td>0.1</td><td>4.2</td><td><0.1</td><td></td><td></td></lor=0<>		0.1	4.2	<0.1		
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg) TEQ (mg/kg)</td><td>0.2</td><td>4.2</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg) TEQ (mg/kg)	0.2	4.2	<0.2	-	-
					0.3	4.3	<0.3	-	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>4.2</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	4.2	<0.2	-	-
		0	Total PAH (18)	mg/kg					
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.5	0.5	-	10
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	96
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.5	-	10:
3s in Soil							Met	nod: ME-(Al	J)-[ENV]A
Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recov
173782.001	LB138732.026		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochior 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochior 1260		0.2	0.2	<0.2	0.4	- 10
				mg/kg					
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	-	11

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE173782.018	LB138939.004		Arsenic, As	mg/kg	3	53	9	50	87
SE 17 57 62.010	LD130333.004		Cadmium, Cd	mg/kg	0.3	45	0.6	50	88
			Chromium, Cr	mg/kg	0.3	99	85	50	29 ④
					0.5	70	23	50	94
			Copper, Cu	mg/kg					
			Lead, Pb	mg/kg	1	250	230	50	42 ④
			Nickel, Ni	mg/kg	0.5	75	35	50	80
			Zinc, Zn	mg/kg	0.5	430	440	50	-17 ④
SE173909.001	LB138922.004		Arsenic, As	mg/kg	3	58	1	50	113
			Cadmium, Cd	mg/kg	0.3	51	<0.1	50	102
			Chromium, Cr	mg/kg	0.3	60	8.2	50	103
			Copper, Cu	mg/kg	0.5	120	67	50	112
			Lead, Pb	mg/kg	1	53	3	50	100
			Nickel, Ni	mg/kg	0.5	52	2.1	50	99
			Zinc, Zn	mg/kg	0.5	100	49	50	107
RH (Total Reco	verable Hydrocarbor	ns) in Soil					Mett	nod: ME-(AL)-[ENV]A
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE173782.001							-		
JE 173702.001	LB138732.026		TRH C10-C14	mg/kg	20	32	<20	40	80
			TRH C15-C28	mg/kg	45	<45	<45	40	78
			TRH C29-C36	mg/kg	45	<45	<45	40	70
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	32	<25	40	80
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	32	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	73
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
E173782.024	LB138733.017		TRH C10-C14	mg/kg	20	29	<20	40	73
			TRH C15-C28	mg/kg	45	<45	<45	40	75
			TRH C29-C36	mg/kg	45	<45	<45	40	80
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	30	<25	40	75
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	30	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	78
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	-	-
					-	-			
OC's in Soil								nod: ME-(AU	
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE173781.001	LB138845.004	Monocyclic	Benzene	mg/kg	0.1	1.9	0.01	2.9	64
		Aromatic	Toluene	mg/kg	0.1	2.0	0	2.9	69
			Ethylbenzene	mg/kg	0.1	1.7	0	2.9	60
			m/p-xylene	mg/kg	0.2	4.0	0.01	5.8	68
			o-xylene	mg/kg	0.1	2.0	0.01	2.9	68
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	0	-	-
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.0	4.28	-	79
		-	d4-1,2-dichloroethane (Surrogate)	mg/kg	-	3.9	4.58	-	78
			d8-toluene (Surrogate)	mg/kg	-	4.1	4.25	-	82
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.8	4.58	-	77
		Totals	Total Xylenes	mg/kg	0.3	5.9	0.02	-	
		101013	Total BTEX	mg/kg	0.6	12	0.02	-	-
E173782.001	LB138842.004	Managyalia			0.0	2.2	<0.1	2.9	76
L 1 3 1 0Z.UU I	LD130042.004	Monocyclic	Benzene	mg/kg	0.1	2.2	<0.1	2.9	76
		Aromatic	Toluene	mg/kg					
			Ethylbenzene	mg/kg	0.1	2.0	<0.1	2.9	67
			m/p-xylene	mg/kg	0.2	4.5	<0.2	5.8	77
			o-xylene	mg/kg	0.1	2.1	<0.1	2.9	72
		Polycyclic	Naphthalene	mg/kg	0.1	<0.1	<0.1	-	-
							2.0	-	77
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.9	3.8	-	
		Surrogates	Dibromofluoromethane (Surrogate) d4-1,2-dichloroethane (Surrogate)	mg/kg mg/kg	-	3.9	4.5	-	72
		Surrogates							

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

VOC's in Soil (continued) Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number Parameter Units LOR <u>R</u>esult Original Spike Recovery% SE173782.001 LB138842.004 Totals Total Xylenes mg/kg 0.3 6.6 < 0.3 Total BTEX mg/kg 0.6 13 <0.6 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 QC Sample Sample Number LOR Result Spike Recovery% Parameter Units Original SE173781.001 LB138845.004 TRH C6-C10 mg/kg 25 <25 0.68 24.65 76 TRH C6-C9 20 <20 0 23.2 73 mg/kg Dibromofluoromethane (Surrogate) 4.0 4.28 79 Surrogates mg/kg d4-1,2-dichloroethane (Surrogate) mg/kg 39 4 58 78 d8-toluene (Surrogate) mg/kg 4.1 4.25 82 Bromofluorobenzene (Surrogate) 4.58 3.8 77 mg/kg -VPH F Benzene (F0) mg/kg 0.1 1.9 0.01 _ Bands TRH C6-C10 minus BTEX (F1) mg/kg 25 <25 0.65 7.25 101 LB138842.004 SE173782.001 TRH C6-C10 25 <25 <25 24.65 82 mg/kg 23.2 TRH C6-C9 mg/kg 20 21 <20 81 Surrogates Dibromofluoromethane (Surrogate) mg/kg 3.9 3.8 77 d4-1,2-dichloroethane (Surrogate) 3.6 4.5 72 mg/kg d8-toluene (Surrogate) mg/kg 4.1 3.9 81 -Bromofluorobenzene (Surrogate) 4.3 3.6 85 mg/kg VPH F Benzene (F0) mg/kg 0.1 2.2 <0.1 TRH C6-C10 minus BTEX (F1) 7.25 Bands mg/kg 25 <25 <25 102

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

QC Sample Sample Number Parameter

Units LOR

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

SAMPLE RECEIPT ADVICE

CLIENT DETAIL	S	LABORATORY DETA	NILS
Contact	Gonzalo Parra	Manager	Huong Crawford
Client	LAND AND GROUNDWATER CONSULTING PTY LTD	Laboratory	SGS Alexandria Environmental
Address	131 B Riverview Road NSW 2204	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95598424	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	gparra@lgconsult.com.au	Email	au.environmental.sydney@sgs.com
Project	LG17100.01 Dillwynnia Grove, Heathcote	Samples Received	Thu 14/12/2017
Order Number	LGC141106060	Report Due	Thu 21/12/2017
Samples	28	SGS Reference	SE173782

SUBMISSION DETAILS

This is to confirm that 28 samples were received on Thursday 14/12/2017. Results are expected to be ready by COB Thursday 21/12/2017. Please quote SGS reference SE173782 when making enquiries. Refer below for details relating to sample integrity upon receipt.

- Samples clearly labelled Sample container provider Samples received in correct containers Date documentation received Samples received in good order Sample temperature upon receipt Turnaround time requested
- Yes SGS Yes 14/12/2017 Yes 10.2°C Standard

Complete documentation received Sample cooling method Sample counts by matrix Type of documentation received Samples received without headspace Sufficient sample for analysis

Yes Ice Bricks 26 Soil, 2 Material COC Yes Yes

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

QC1B has been forwarded to ALS. 11 soil samples have been placed on hold.

This document is issued by the Company under its General Conditions of Service accessible at www.sqs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

t +61 2 8594 0400 Australia Australia f +61 2 8594 0499

www.sgs.com.au

__ CLIENT DETAILS _

- SUMMARY OF ANALYSIS -

Client LAND AND GROUNDWATER CONSULTING PTY LTD

Project LG17100.01 Dillwynnia Grove, Heathcote

No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	TP1/0.5-1.0	29	14	26	11	7	10	12	8
002	TP2/0.3-1.0	29	14	26	11	7	10	12	8
003	TP3/0.2-0.3	29	14	26	11	7	10	12	8
004	TP4/0.2-0.3	29	14	26	11	7	10	12	8
005	TP5/0.2-0.3	29	14	26	11	7	10	12	8
006	TP6/0.2-0.3	29	14	26	11	7	10	12	8
007	TP7/0.2-0.3	29	14	26	11	7	10	12	8
008	S1	29	14	26	11	7	10	12	8
009	S2	-	-	26	-	7	10	12	8
)10	S3	29	14	26	11	7	10	12	8
)11	S4	-	-	26	-	7	10	12	8
)12	S5	29	14	26	11	7	10	12	8
)13	S6	-	-	26	-	7	10	12	8
)14	S7	29	14	26	11	7	10	12	8
)15	S8	29	14	26	11	7	10	12	8
)16	S9	29	14	26	11	7	10	12	8
)17	S10	-	-	26	-	7	10	12	8
)18	SH1	29	14	26	11	7	10	12	8
)19	SH2	29	14	26	11	7	10	12	8
)20	SH3	29	14	26	11	7	10	12	8
)21	SH4	29	14	26	11	7	10	12	8
)24	BH10/0.2-0.3	29	14	26	11	7	10	12	8

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details .

Testing as per this table shall commence immediately unless the client intervenes with a correction . SSPP (Sydney South) revised and additional documentation - (2017SSH019) Part 7

__ CLIENT DETAILS __

Client LAND AND GROUNDWATER CONSULTING PTY LTD

Project LG17100.01 Dillwynnia Grove, Heathcote

SUMMAR'	Y OF ANALYSIS		1	1		1	1	1	
No.	Sample ID	OC Pesticides in Soil	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
025	BH11/0.2-0.3	29	14	26	11	7	10	12	8
026	BH12/0.2-0.3	29	14	26	11	7	10	12	8
027	QC1A	29	14	26	11	7	10	12	8
028	QC2A	-	-	26	-	7	10	12	8

SAMPLE RECEIPT ADVICE

__ CLIENT DETAILS _

Client LAND AND GROUNDWATER CONSULTING PTY LTD

Project LG17100.01 Dillwynnia Grove, Heathcote

No.	Sample ID	Fibre ID in bulk materials	Fibre Identification in soil	Mercury in Soil	Moisture Content
001	TP1/0.5-1.0	-	2	1	1
002	TP2/0.3-1.0	-	2	1	1
003	TP3/0.2-0.3	-	2	1	1
004	TP4/0.2-0.3	-	2	1	1
005	TP5/0.2-0.3	-	2	1	1
006	TP6/0.2-0.3	-	2	1	1
007	TP7/0.2-0.3	-	2	1	1
008	S1	-	2	1	1
009	S2	-	-	1	1
010	S3	-	2	1	1
011	S4	-	-	1	1
012	S5	-	2	1	1
013	S6	-	-	1	1
014	S7	-	2	1	1
015	S8	-	2	1	1
016	S9	-	2	1	1
017	S10	-	-	1	1
018	SH1	-	2	1	1
019	SH2	-	2	1	1
020	SH3	-	2	1	1
021	SH4	-	2	1	1
022	PACM1	1	-	-	-
023	PACM2	1	-	-	-
024	BH10/0.2-0.3	_	_	1	1

_ CONTINUED OVERLEAF

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction .

SSPP (Sydney South) revised and additional documentation - (2017SSH019) Part 7 15/12/2017

SAMPLE RECEIPT ADVICE

__ CLIENT DETAILS __

Client LAND AND GROUNDWATER CONSULTING PTY LTD

Project LG17100.01 Dillwynnia Grove, Heathcote

 SUMMAR	RY OF	ANALYS	IS

No.	Sample ID	Mercury in Soil	Moisture Content
025	BH11/0.2-0.3	1	1
026	BH12/0.2-0.3	1	1
027	QC1A	1	1
028	QC2A	1	1

Chain of Custody Record

Project No:	LG17100.01			Lab: SGS						ANALYSIS REQUIRED								
Project/Site:	1-21 Dillwynnia Grove,	Heathcote, NSW	1	Lab Quote No: LGC141106060						đ	CL 10: TRH/BTEX/PAH/ 8 Metals							
Sampled By:	Gonzalo Parra			Lab Batch	No:							5	A	1				
Phone:	0415 726 951			Date Results Required: Standard TAT							/o	×	-					
Page 1	of 2			Sample Dis	posal Aft		1.11					CL 17: TRH/BTEX/PAH/OC/OP / PCB/8 Metals	E S	Soil				
Number of Eski	es: 2				_	CONT	INER TY	PE & PR	ESERVAT	IVE		4/x	Ĥ	8				
	1. C. C. C. L. C. L.	1200		Soil			-		Water			E B	¥ s	8		1.0		
LAB ID	SAMPLE ID	DATE	MATRIX	0.1-0.2 L	0 - X	0.1-0.2 L	0.5-1.0 L		0.25-1 L	0.2-1.0L		1/8	eta	est				0
				Glass jar, unpreserved	Plastic bag	Filtered,	Amber glass, unpreserved	Glass, unpreserved	Plastic, unpreserved	Plastic, sterile		JE.	N N	Asbestos	- 11 Jack	- I -		HOLD
0	TP1/0.5-1.0	13/12/17	Soil	1	1	HNO3						X		x	-			-
	TP1/1.5	13/12/17	Soil	1		1					-						12 21 1	Но
2	TP2/0.3-1.0	13/12/17	Soil	1	1	-		-				x		x				-
-	TP2/1.0	13/12/17	Soil	1	-	-									-			Но
3	TP3/0.2-0.3	13/12/17	Soil	1	1	-		-				x		x				
3	TP3/0.5				1	-							-	-				-
1		13/12/17	Soil	1	-	-	-					x	-	x	-			Но
4	TP4/0.2-0.3	13/12/17	Soil	1	1			-	-		-	^		~				-
5	TP4/0.5	13/12/17	Soil	1								x		x	-		-	Но
>	TP5/0.2-0.3	13/12/17	Soil	1	1		1		1		-	^		^				-
	TP5/1.5	13/12/17	Soil	1			-			1								Но
6	TP6/0.2-0.3	13/12/17	Soil	1	1		1.			C	1	X		x			-	_
	TP6/0.5	13/12/17	Soil	1		1	1.1			1.1.1.1								Ho
7	TP7/0.2-0.3	13/12/17	Soil	1	1	1.	1	-		· · · · · · · · · · · · · · · · · · ·	1	x		x				
	TP7/0.5	13/12/17	Soil	1				1		P 18			-					Ho
8	S1	14/12/17	Soil	1		1.						x		x				
9	S2	14/12/17	Soil	1	1.	_	1						x	1				
10	S3	14/12/17	Soil	1	1	1.1.1.1				1		x		x				
U	S4	14/12/17	Soil	1			1.	12	1			1.27	X					
12	S5	14/12/17	Soil	1	1	6.000	1	1	66.77			X	1	x				
12	S6	14/12/17	Soil	1		1			120		1		X					
14	S7	14/12/17	Soil	1	1							x	1	x				
15	S8	14/12/17	Soil	1		T .				S	-	x		x				-
16	S9	14/12/17	Soil	1		T SC	IS EHS	Alexan	dria La	boratory		x		x				
17	S10	14/12/17	Soil	1		† III					-	-	x			-		-
15	SH1	14/12/17	Soil	1		+ 11						x		x				-
19	SH2	14/12/17	Soil	1		+ 1					-	x	-	x	-	-		
20	SH2 SH3	14/12/17	Soil	1	1	+ ₩						x		x		-		
21	SH4	14/12/17	Soil	1	1	+ C	E17	3782	CO	<u>n</u>		x	-	x		-		+
22				1		1 0		UTUL		47			-	x				
	PACM1	13/12/17	Soil		1	+ R	eceivea	: 14 - L)ec - 20			-	-	x				_
23	PACM2	14/12/17	Soil		1	+							-	^		-		-
						-	-	-				-		-				_
olineuisted D.			TOTALS	28	9	Deather	0	14			Curto							N
Relinquished By: Gonzalo Parra		1		14/12/17		Received	BA:				Samples		s Intact				\sim	N
NAME	15 7 4	SIGNATURE	-e	14/12/17 DATE	tre	NAME	in	SIGNATU	RF 🙋	DATE	14/1 Metho			eu			0	14
in the	participant of the second seco	STONATORE	~	DATE	4AF	NAPSI IL	- 7	STONATO		DATE	v N	2 01 011	princinc	_				

Land & Groundwater Consulting Pty Ltd ABN 65 162 117 928 13/80-84 Illawarra Road Marrickville NSW 2204

www.lgconsult.com.au

web

email email

goarra@igconsult.com.au

(1)	
Vill	
LG CONSULT	

Chain of Custody Record

Project No:	LG17100.01			Lab:			SGS							ANALYSIS REQUIRED						
Project/Site:	1-21 Dillwynnia Grove,	Heathcote, NSV	V	Lab Quote			LGC141	106060					4	1	T	and the second second		I		
Sampled By:	Gonzalo Parra		-	Lab Batch I									1 %	AH		tio				
hone:	0415 726 951			Date Result			Standard	d TAT b					1 0 t	5	1.1	lica				1 1
Page 2	of 2			Sample Dis	posal Afte								Ŧ	Ē	io	ntif				
Number of Eski	ies: 2		-			CONT	AINER TY	PE & PR	ESERVA	TIVE			d'a	1/8	DS	ina				
		12.00 11	second is	Soil		-	-		Water					È.	IS	s				
LAB ID	SAMPLE ID	DATE	MATRIX	0.1-0.2 L		0.1-0.2 L	0.5-1.0 L		0.25-1 L	0.2-1.0L				tal o	sto	sto				
		1.11.1.1.1.1	1.1.1.1.1	Glass jar, unpreserved	Plastic bag	Filtered,	Amber glass, unpreserved	Glass, unpreserved	Plastic, unpreserved	Plastic, sterile			CL 17: TRH/BTEX/PAH/OC/OP	Me	Asbestos ID Soil	Asbestos Quantification		5115		
24	BH10/0.2-0.3	14/12/17	Soil	1	1	HNO3	Chipreserved	unpreserved	unpreserved	sterile			X	0 00	4	4	-			
	BH10/1.5	14/12/17	Soil	1									^			-	-	-	-	
25	BH11/0.2-0.3	14/12/17	Soil	1	1	1	-				-	-	x	-	-	-			_	н
	BH11/1.5	14/12/17	Soil	1	-				-				^		-	1 2 2			_	
20	BH12/0.2-0.3	14/12/17	Soil	1	1	-					-						1	-		н
	BH12/1.5	14/12/17	Soil	1	1		-						x			-	S		- 1	
27	QC1A	14/12/17								-	·								1.1	Н
28	QC2A		Soil	1			12		1		1		x	1						
25	QC1B	14/12/17	Soil	1	1								Levi	x	1.72			100		
		14/12/17	Soil	1			1.1.1.1						x		Pleas	e send	to ALS			
	QC2B	14/12/17	Soil	1	1	1.00		-	1000				250		Profile (122.8	5.3107		н
				1	1				1	1			1				1.00			
									N								1		-	
	4									-	ETC 11					-	-	-	-	
	10.2									-						-	-			++
		1.				1. 5 1.								-	-	-		_		
					1.00				-				-			-	-	-		
	1	1 1 1 1 1 1											-	-	-		-	-	_	
		1	1 1						-	-			_	-	_	-	_	-	_	
		1			-									-		-			1.11	
		-									· · · · · · · · ·								1. 20	
		-					-				1		-	1	1.1			- 1		1.11
											1					1	100			
	-						2									1.20				
		-	1													1000			1	
							2.14									6.00			10.3	
		1																		
	1																		-	
											1.00	1								
		1					17 <u>- 1</u> 7						-	-		-	-	-		
		1											-	-	-	-	-	-	+	
														-	-	-		-	+	
			·						-			-	-	-	-	-	-	-	+	
			TOTALS	10	3								-	-	-	-	-	_	+	
elinquished By:		19.4				Received E	By:		_			Custod	Coale	Intact						
onzalo Parra	township	1 - na	1.1	14/12/17	6	Construction of	0 1					Samples I			d				Y	N
AME	12-96	SIGNATURE			Er 1	NAME	Juny	SIGNATUR	0	-	DATE IT	(Method			u				Č	N
OTES:	Please send samples QC1B to Al	S			1								or only	inchi						
			1.000	Y	a		/		_		4									
and & Groundu	vater Consulting Pty Ltd Al	BN 65 162 117 9	28				-							2						

CERTIFICATE OF ANALYSIS

Work Order	ES1732021	Page	: 1 of 7
Client	: LAND & GROUNDWATER CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: GONZALO PARRA	Contact	: Customer Services ES
Address	: 13/80-84 Illawarra Road	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	Marrickville NSW 2204		
Telephone	:	Telephone	: +61-2-8784 8555
Project	: LG17100.01	Date Samples Received	: 15-Dec-2017 13:00
Order number	:	Date Analysis Commenced	: 19-Dec-2017
C-O-C number	:	Issue Date	: 27-Dec-2017 16:03
Sampler	: GONZALO PARRA		IC-MRA NATA
Site	: 1-21 Dillwynnia Grove, Heathcote, NSW		
Quote number	: SYBQ/408/15		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar Raymond Commodore	Organic Coordinator Instrument Chemist	Sydney Organics, Smithfield, NSW Sydney Inorganics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

 \emptyset = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page : 3 of 7 Work Order : ES1732021 Client : LAND & GROUNDWATER CONSULTING PTY LTD Project : LG17100.01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC1B									
· · · · · · · · · · · · · · · · · · ·	Cli	ient samplii	ng date / time	14-Dec-2017 00:00									
Compound	CAS Number	LOR	Unit	ES1732021-001									
				Result									
EA055: Moisture Content (Dried @ 1	05-110°C)												
Moisture Content		1.0	%	10.8									
EG005T: Total Metals by ICP-AES													
Arsenic	7440-38-2	5	mg/kg	16									
Cadmium	7440-43-9	1	mg/kg	<1									
Chromium	7440-47-3	2	mg/kg	16									
Copper	7440-50-8	5	mg/kg	27									
Lead	7439-92-1	5	mg/kg	64									
Nickel	7440-02-0	2	mg/kg	9									
Zinc	7440-66-6	5	mg/kg	152									
EG035T: Total Recoverable Mercury	EG035T: Total Recoverable Mercury by FIMS												
Mercury	7439-97-6	0.1	mg/kg	0.1									
EP066: Polychlorinated Biphenyls (F													
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1									
EP068A: Organochlorine Pesticides	(0C)							1					
alpha-BHC	319-84-6	0.05	mg/kg	<0.05									
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05									
beta-BHC	319-85-7	0.05	mg/kg	<0.05									
gamma-BHC	58-89-9	0.05	mg/kg	<0.05									
delta-BHC	319-86-8	0.05	mg/kg	<0.05									
Heptachlor	76-44-8	0.05	mg/kg	<0.05									
Aldrin	309-00-2	0.05	mg/kg	<0.05									
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05									
^ Total Chlordane (sum)		0.05	mg/kg	<0.05									
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05									
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05									
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05									
Dieldrin	60-57-1	0.05	mg/kg	<0.05									
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05									
Endrin	72-20-8	0.05	mg/kg	<0.05									
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05									
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05									
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05									
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05									
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05									

Page : 4 of 7 Work Order : ES1732021 Client : LAND & GROUNDWATER CONSULTING PTY LTD Project : LG17100.01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC1B	 	
· · · · · · · · · · · · · · · · · · ·	Cli	ent samplii	ng date / time	14-Dec-2017 00:00	 	
Compound	CAS Number	LOR	Unit	ES1732021-001	 	
				Result	 	
EP068A: Organochlorine Pestici	des (OC) - Continued					
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5 0-2	0.05	mg/kg	<0.05	 	
EP068B: Organophosphorus Pes	sticides (OP)					
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	 	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	 	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	 	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	 	
Diazinon	333-41-5	0.05	mg/kg	<0.05	 	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	 	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	 	
Malathion	121-75-5	0.05	mg/kg	<0.05	 	
Fenthion	55-38-9	0.05	mg/kg	<0.05	 	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	 	
Parathion	56-38-2	0.2	mg/kg	<0.2	 	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	 	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	 	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	 	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	 	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	 	
Ethion	563-12-2	0.05	mg/kg	<0.05	 	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	 	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	 	
EP075(SIM)B: Polynuclear Arom	atic Hydrocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene PP (Sydney South) revised and add	129-00-0 ditional documentation - (20	0.5 017S <mark>SH</mark> 01	mg/kg 19) Part 7	<0.5	 	 Page 214 o

Page : 5 of 7 Work Order : ES1732021 Client : LAND & GROUNDWATER CONSULTING PTY LTD Project : LG17100.01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC1B								
	Cl	ient samplii	ng date / time	14-Dec-2017 00:00								
Compound	CAS Number	LOR	Unit	ES1732021-001								
				Result								
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Cont	inued										
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5								
Chrysene	218-01-9	0.5	mg/kg	<0.5								
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5								
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5								
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5								
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5								
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5								
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5								
^ Sum of polycyclic aromatic hydrocarbor	ıs	0.5	mg/kg	<0.5								
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5								
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6								
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2								
EP080/071: Total Petroleum Hydrocarbons												
C6 - C9 Fraction		10	mg/kg	<10								
C10 - C14 Fraction		50	mg/kg	<50								
C15 - C28 Fraction		100	mg/kg	<100								
C29 - C36 Fraction		100	mg/kg	<100								
^ C10 - C36 Fraction (sum)		50	mg/kg	<50								
EP080/071: Total Recoverable Hydroc	arbons - NEPM 201	3 Fraction	ıs									
C6 - C10 Fraction	C6_C10	10	mg/kg	<10								
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10								
>C10 - C16 Fraction		50	mg/kg	<50								
>C16 - C34 Fraction		100	mg/kg	<100								
>C34 - C40 Fraction		100	mg/kg	<100								
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50								
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50								
(F2)												
EP080: BTEXN		0.2	mallin	<0.2								
Benzene	71-43-2	0.2	mg/kg									
Toluene	108-88-3	0.5	mg/kg	<0.5								
Ethylbenzene	100-41-4	0.5 0.5	mg/kg	<0.5								
meta- & para-Xylene	108-38-3 106-42-3		mg/kg	<0.5								
ortho-Xylene	95-47-6	0.5	mg/kg	<u.0< th=""><th></th><th></th><th></th><th></th></u.0<>								

Page : 6 of 7 Work Order : ES1732021 Client : LAND & GROUNDWATER CONSULTING PTY LTD Project : LG17100.01

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	QC1B								
	Cli	ent sampli	ing date / time	14-Dec-2017 00:00								
Compound	CAS Number	LOR	Unit	ES1732021-001								
				Result								
EP080: BTEXN - Continued												
^ Sum of BTEX		0.2	mg/kg	<0.2								
^ Total Xylenes		0.5	mg/kg	<0.5								
Naphthalene	91-20-3	1	mg/kg	<1								
EP066S: PCB Surrogate												
Decachlorobiphenyl	2051-24-3	0.1	%	107								
EP068S: Organochlorine Pesticide Surrogate												
Dibromo-DDE	21655-73-2	0.05	%	90.9								
EP068T: Organophosphorus Pestici	EP068T: Organophosphorus Pesticide Surrogate											
DEF	78-48-8	0.05	%	91.3								
EP075(SIM)S: Phenolic Compound S	Surrogates											
Phenol-d6	13127-88-3	0.5	%	80.9								
2-Chlorophenol-D4	93951-73-6	0.5	%	89.7								
2.4.6-Tribromophenol	118-79-6	0.5	%	58.4								
EP075(SIM)T: PAH Surrogates												
2-Fluorobiphenyl	321-60-8	0.5	%	88.6								
Anthracene-d10	1719-06-8	0.5	%	92.6								
4-Terphenyl-d14	1718-51-0	0.5	%	89.6								
EP080S: TPH(V)/BTEX Surrogates												
1.2-Dichloroethane-D4	17060-07-0	0.2	%	118								
Toluene-D8	2037-26-5	0.2	%	114								
4-Bromofluorobenzene	460-00-4	0.2	%	102								

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surrogate			
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide Surrogate			
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surrogates			
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

Work Order	ES1732021	Page	. 4
Work Order	E31732021	rage	: 1 of 5
Client	LAND & GROUNDWATER CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: GONZALO PARRA	Telephone	: +61-2-8784 8555
Project	: LG17100.01	Date Samples Received	: 15-Dec-2017
Site	: 1-21 Dillwynnia Grove, Heathcote, NSW	Issue Date	: 27-Dec-2017
Sampler	: GONZALO PARRA	No. of samples received	: 1
Order number	:	No. of samples analysed	:1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Method	Sample Date	Extraction / Preparation					
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
oil Glass Jar - Unpreserved (EA055)							
QC1B	14-Dec-2017				19-Dec-2017	28-Dec-2017	✓
EG005T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T)			12-Jun-2018			12-Jun-2018	
QC1B	14-Dec-2017	20-Dec-2017	12-Jun-2018	1	20-Dec-2017	12-Jun-2018	✓
EG035T: Total Recoverable Mercury by FIMS							
oil Glass Jar - Unpreserved (EG035T)	14-Dec-2017	20-Dec-2017	11-Jan-2018		20-Dec-2017	11-Jan-2018	
QC1B	14-Dec-2017	20-Dec-2017	11-Jaii-2016	~	20-Dec-2017	11-Jan-2016	✓
EP066: Polychlorinated Biphenyls (PCB)			1		1	1	
oil Glass Jar - Unpreserved (EP066) QC1B	14-Dec-2017	20-Dec-2017	28-Dec-2017	1	22-Dec-2017	29-Jan-2018	1
	14-060-2017	20-Dec-2017	20 000 2011	•	22-Dec-2017	20 0011 2010	V
EP068A: Organochlorine Pesticides (OC)							
oil Glass Jar - Unpreserved (EP068) QC1B	14-Dec-2017	20-Dec-2017	28-Dec-2017	1	22-Dec-2017	29-Jan-2018	1
		20 200 2011	20 200 2011	v	22 000 2011	20 00 2010	v
EP068B: Organophosphorus Pesticides (OP) Soil Glass Jar - Unpreserved (EP068)					1		
QC1B	14-Dec-2017	20-Dec-2017	28-Dec-2017	1	22-Dec-2017	29-Jan-2018	1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons				_			
coll Glass Jar - Unpreserved (EP075(SIM))					1		
QC1B	14-Dec-2017	20-Dec-2017	28-Dec-2017	1	21-Dec-2017	29-Jan-2018	1
EP080/071: Total Petroleum Hydrocarbons							
coll Glass Jar - Unpreserved (EP080)							
QC1B	14-Dec-2017	19-Dec-2017	28-Dec-2017	1	19-Dec-2017	28-Dec-2017	1
oil Glass Jar - Unpreserved (EP071)							
QC1B	14-Dec-2017	20-Dec-2017	28-Dec-2017	1	21-Dec-2017	29-Jan-2018	 ✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
oil Glass Jar - Unpreserved (EP080)							
QC1B	14-Dec-2017	19-Dec-2017	28-Dec-2017	-	19-Dec-2017	28-Dec-2017	✓
ioil Glass Jar - Unpreserved (EP071)			00 D 00/7			00 1 00/0	
QC1B	14-Dec-2017	20-Dec-2017	28-Dec-2017	 ✓ 	21-Dec-2017	29-Jan-2018	 ✓

Page	: 3 of 5
Work Order	: ES1732021
Client	: LAND & GROUNDWATER CONSULTING PTY LTD
Project	: LG17100.01

Matrix: SOIL Evaluation: \mathbf{x} = Holding time breach ; \mathbf{v} = Within holding time. Method Extraction / Preparation Analysis Sample Date Container / Client Sample ID(s) Date extracted Due for extraction Evaluation Date analysed Due for analysis Evaluation EP080: BTEXN Soil Glass Jar - Unpreserved (EP080) 14-Dec-2017 QC1B 19-Dec-2017 28-Dec-2017 19-Dec-2017 28-Dec-2017 1 \checkmark

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ntrol frequency	not within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Count			Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	2	14	14.29	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	18	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	11	9.09	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	6	16.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	14	7.14	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	18	5.56	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)
Pesticides by GCMS	EP068	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This technique is compliant with NEPM (2013) Schedule B(3) (Method 504,505)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

QUALITY CONTROL REPORT

Work Order	: ES1732021	Page	: 1 of 10
Client	: LAND & GROUNDWATER CONSULTING PTY LTD	Laboratory	: Environmental Division Sydney
Contact	: GONZALO PARRA	Contact	: Customer Services ES
Address	: 13/80-84 Illawarra Road Marrickville NSW 2204	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	:	Telephone	: +61-2-8784 8555
Project	: LG17100.01	Date Samples Received	: 15-Dec-2017
Order number	:	Date Analysis Commenced	: 19-Dec-2017
C-O-C number	:	Issue Date	27-Dec-2017
Sampler	: GONZALO PARRA		AC-MRA NAT
Site	: 1-21 Dillwynnia Grove, Heathcote, NSW		
Quote number	: SYBQ/408/15		Accreditation No. 8
No. of samples received	: 1		Accredited for compliance wi
No. of samples analysed	: 1		ISO/IEC 17025 - Testi

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Raymond Commodore	Instrument Chemist	Sydney Inorganics, Smithfield, NSW
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

ub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
A055: Moisture Co	ntent (Dried @ 105-110°	°C) (QC Lot: 1328475)							
ES1731937-020	Anonymous	EA055: Moisture Content		1	%	11.3	11.1	1.02	0% - 50%
ES1732042-007	Anonymous	EA055: Moisture Content		1	%	11.5	10.6	8.15	0% - 50%
G005T: Total Metal	s by ICP-AES (QC Lot:	1329678)							
ES1732021-001	QC1B	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	16	17	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	9	9	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	16	16	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	27	27	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	64	65	1.90	0% - 50%
	EG005T: Zinc	7440-66-6	5	mg/kg	152	156	2.73	0% - 20%	
ES1731808-039 Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit	
		EG005T: Chromium	7440-47-3	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	6	5	0.00	No Limit
G035T: Total Reco	overable Mercury by FIN	IS (QC Lot: 1329679)							
ES1732021-001	QC1B	EG035T: Mercury	7439-97-6	0.1	mg/kg	0.1	<0.1	0.00	No Limit
ES1731808-039	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
P066: Polychlorina	ted Biphenyls (PCB) (0	QC Lot: 1326863)							
EW1705287-008	Anonymous	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
ES1732021-001	QC1B	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.00	No Limit

Page	: 3 of 10
Work Order	: ES1732021
Client	: LAND & GROUNDWATER CONSULTING PTY LTD
Project	: LG17100.01

ub-Matrix: SOIL Laboratory sample ID	Client sample ID	Matheads Commonweal	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
	1 · · · · · · · · · · · · · · · · · · ·	Method: Compound QC Lot: 1326859) - continued	CAS Number	LOK	Om	Unginal Result	Duplicate Result	RFD (76)	Recovery Linits (76)
ES1732021-001	QC1B		319-84-6	0.05	ma/ka	<0.05	<0.05	0.00	No Limit
231732021-001	QUID	EP068: alpha-BHC	118-74-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Hexachlorobenzene (HCB)	319-85-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-BHC			mg/kg				
		EP068: gamma-BHC	58-89-9	0.05	mg/kg	< 0.05	< 0.05	0.00	No Limit
		EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Aldrin	309-00-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
	EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	<0.05	0.00	No Limit	
		EP068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
	EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit	
	EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	<0.2	0.00	No Limit	
	EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	<0.2	0.00	No Limit	
EP068B: Organopho	sphorus Pesticides (OF	P) (QC Lot: 1326859)							
ES1732021-001	QC1B	EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
			55-38-9	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Fenthion	2921-88-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorpyrifos	23505-41-1	0.05		<0.05	<0.05	0.00	No Limit
		EP068: Pirimphos-ethyl	470-90-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Chlorfenvinphos			mg/kg				
		EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	< 0.05	<0.05	0.00	No Limit
		EP068: Fenamiphos	22224-92-6	0.05	mg/kg	< 0.05	<0.05		No Limit
		EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	< 0.05	0.00	No Limit
		EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	<0.05	0.00	No Limit
		EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
PP (Svdnev South) re	vised and additional doc	EP068: Parathion-methyl umentation - (2017SSH019) Part 7	298-00-0	0.2	mg/kg	<0.2	<0.2	0.00	No Limit Page 225

Page	: 4 of 10
Work Order	: ES1732021
Client	: LAND & GROUNDWATER CONSULTING PTY LTD
Project	: LG17100.01

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP068B: Organopho	sphorus Pesticides (OI	P) (QC Lot: 1326859) - continued									
ES1732021-001	QC1B	EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit		
EP075(SIM)B: Polyn	uclear Aromatic Hydrod	carbons (QC Lot: 1326862)									
EW1705287-008	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	0.5	<0.5	0.00	No Limit		
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	0.5	<0.5	0.00	No Limit		
		hydrocarbons									
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
ES1732021-001	QC1B	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		

Page	: 5 of 10
Work Order	: ES1732021
Client	: LAND & GROUNDWATER CONSULTING PTY LTD
Project	: LG17100.01

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Poly	nuclear Aromatic Hydr	ocarbons (QC Lot: 1326862) - continued							
ES1732021-001	QC1B	EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		hydrocarbons							
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP080/071: Total P	etroleum Hydrocarbon	s (QC Lot: 1326861)							
EW1705287-008	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1732021-001	QC1B	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: To <u>tal P</u>	etroleum Hydrocarbon	s (QC Lot: 1328055)							
EP1714084-006	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
ES1732170-021	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total R	ecoverable Hydrocarb	ons - NEPM 2013 Fractions (QC Lot: 1326861)							
EW1705287-008	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
	,	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1732021-001	QC1B	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total R	ecoverable Hvdrocarb	ons - NEPM 2013 Fractions (QC Lot: 1328055)							
EP1714084-006	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
ES1732170-021	Anonymous	EP080: C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	0.00	No Limit
EP080: BTEXN (QC	-								
EP1714084-006	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
	Anonymous	EP080: Toluene	108-88-3	0.5	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Holdene	100-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		Er 000. meta- & para-Xylene	106-42-3	0.0	mg/kg	-0.0	-0.0	0.00	
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
ES1732170-021	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
			106-42-3		33				
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	Higl
EG005T: Total Metals by ICP-AES (QCLot: 1329	678)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	101	86	126
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	98.8	83	113
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	95.5	76	128
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	101	86	120
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	97.0	80	114
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	106	87	123
G005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	113	80	122
EG035T: Total Recoverable Mercury by FIMS (QCLot: 1329679)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	89.3	70	105
EP066: Polychlorinated Biphenyls (PCB) (QCLo	ot: 1326863)							
P066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1 mg/kg	90.0	62	126
P068A: Organochlorine Pesticides (OC) (QCL	ot: 1326859)							
P068: alpha-BHC	319-84-6	0.05	mg/kg	<0.05	0.5 mg/kg	82.7	69	113
P068: Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	0.5 mg/kg	89.0	65	117
P068: beta-BHC	319-85-7	0.05	mg/kg	<0.05	0.5 mg/kg	76.8	67	119
P068: gamma-BHC	58-89-9	0.05	mg/kg	<0.05	0.5 mg/kg	79.8	68	116
EP068: delta-BHC	319-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	80.4	65	117
P068: Heptachlor	76-44-8	0.05	mg/kg	<0.05	0.5 mg/kg	77.8	67	115
P068: Aldrin	309-00-2	0.05	mg/kg	<0.05	0.5 mg/kg	81.4	69	115
P068: Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	0.5 mg/kg	85.0	62	118
P068: trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	0.5 mg/kg	83.8	63	117
EP068: alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	0.5 mg/kg	86.1	66	116
P068: cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	0.5 mg/kg	84.4	64	116
P068: Dieldrin	60-57-1	0.05	mg/kg	<0.05	0.5 mg/kg	79.2	66	116
EP068: 4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	0.5 mg/kg	77.6	67	115
EP068: Endrin	72-20-8	0.05	mg/kg	<0.05	0.5 mg/kg	77.0	67	123
EP068: beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	0.5 mg/kg	77.2	69	115
P068: 4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	0.5 mg/kg	79.6	69	121
EP068: Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	0.5 mg/kg	99.2	56	120
P068: Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	0.5 mg/kg	88.9	62	124
EP068: 4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	0.5 mg/kg	73.7	66	120
EP068: Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	0.5 mg/kg	88.7	64	122
EP068: Methoxychlor	72-43-5	0.2	mg/kg	<0.2	0.5 mg/kg	61.2	54	130

Page	: 7 of 10
Work Order	: ES1732021
Client	: LAND & GROUNDWATER CONSULTING PTY LTD
Project	: LG17100.01

Sub-Matrix: SOIL				Method Blank (MB) Report	0.1	Laboratory Control Spike (LCS) Report		
	CAS Number	LOR	Unit		Spike	Spike Recovery (%)		y Limits (%)
Method: Compound			Unit	Result	Concentration	LCS	Low	High
EP068B: Organophosphorus Pesticides (OP) (QCLot: 1326								
EP068: Dichlorvos	62-73-7	0.05	mg/kg	<0.05	0.5 mg/kg	77.7	59	119
EP068: Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	0.5 mg/kg	91.7	62	128
EP068: Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	0.5 mg/kg	80.3	54	126
EP068: Dimethoate	60-51-5	0.05	mg/kg	<0.05	0.5 mg/kg	83.4	67	119
EP068: Diazinon	333-41-5	0.05	mg/kg	<0.05	0.5 mg/kg	75.1	70	120
EP068: Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	0.5 mg/kg	77.9	72	120
EP068: Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	0.5 mg/kg	99.8	68	120
EP068: Malathion	121-75-5	0.05	mg/kg	<0.05	0.5 mg/kg	76.7	68	122
EP068: Fenthion	55-38-9	0.05	mg/kg	<0.05	0.5 mg/kg	83.8	69	117
EP068: Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	0.5 mg/kg	79.1	76	118
EP068: Parathion	56-38-2	0.2	mg/kg	<0.2	0.5 mg/kg	98.1	64	122
EP068: Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	0.5 mg/kg	82.8	70	116
EP068: Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	0.5 mg/kg	76.8	69	121
EP068: Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	0.5 mg/kg	83.2	66	118
EP068: Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	0.5 mg/kg	77.9	68	124
EP068: Prothiofos	34643-46-4	0.05	mg/kg	<0.05	0.5 mg/kg	78.6	62	112
EP068: Ethion	563-12-2	0.05	mg/kg	<0.05	0.5 mg/kg	74.4	68	120
EP068: Carbophenothion	786-19-6	0.05	mg/kg	<0.05	0.5 mg/kg	83.4	65	127
EP068: Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	0.5 mg/kg	80.3	41	123
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot	: 1326862)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	114	77	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	114	72	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	112	73	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	119	72	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	110	75	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	114	77	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	116	73	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	117	74	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	108	69	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	112	75	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	6 mg/kg	108	68	116
	205-82-3							
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	108	74	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	114	70	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	105	61	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	106	62	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	109	63	121
EP080/071: Total Petroleum Hydrocarbons (QCLot: 132686								
PPO(Sydifley Sお師) ながらない Hydrocarbons (QCLOL 152886)		7 50	mg/kg	<50	200 mg/kg	102	75	Pad e 92

Page	: 8 of 10
Work Order	: ES1732021
Client	: LAND & GROUNDWATER CONSULTING PTY LTD
Project	: LG17100.01

Sub-Matrix: SOIL	Method Blank (MB)	Laboratory Control Spike (LCS) Report						
	Report	Spike	Spike Recovery (%)	Recovery	Limits (%)			
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons(Q	CLot: 1326861) - continued							
EP071: C15 - C28 Fraction		100	mg/kg	<100	300 mg/kg	98.2	77	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	200 mg/kg	106	71	129
EP080/071: Total Petroleum Hydrocarbons(Q	CLot: 1328055)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	111	68	128
EP080/071: Total Recoverable Hydrocarbons ·	NEPM 2013 Fractions (QCLo	ot: 1326861)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	250 mg/kg	105	77	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	350 mg/kg	107	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	150 mg/kg	99.5	63	131
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCLo	ot: 1328055)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	113	68	128
EP080: BTEXN (QCLot: 1328055)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	111	62	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	107	67	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	98.7	65	117
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	2 mg/kg	104	66	118
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	101	68	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	102	63	119

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Recovery	Limits (%)	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG005T: Total Met	als by ICP-AES (QCLot: 1329678)							
ES1731808-039	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	99.2	70	130	
		EG005T: Cadmium	7440-43-9	50 mg/kg	98.5	70	130	
		EG005T: Chromium	7440-47-3	50 mg/kg	98.6	70	130	
		EG005T: Copper	7440-50-8	250 mg/kg	96.0	70	130	
		EG005T: Lead	7439-92-1	250 mg/kg	98.8	70	130	
		EG005T: Nickel	7440-02-0	50 mg/kg	98.1	70	130	
		EG005T: Zinc	7440-66-6	250 mg/kg	102	70	130	
EG035T: Total Red	coverable Mercury by FIMS(QCLot: 132967	9)						
ES1731808-039	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	90.2	70	130	
EP066: Polychlorir	nated Biphenyls (PCB) (QCLot: 1326863)							
PP (Sydney South)	revised and additional documentation - (2017S	SH019) Part 7					Page 23	

Page	: 9 of 10
Work Order	: ES1732021
Client	: LAND & GROUNDWATER CONSULTING PTY LTD
Project	: LG17100.01

ub-Matrix: SOIL					atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery I	.imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP066: Polychlorin	nated Biphenyls (PCB) (QCLot: 1326863	3) - continued					
ES1732021-001	QC1B	EP066: Total Polychlorinated biphenyls		1 mg/kg	100.0	70	130
EP068A: Organoch	nlorine Pesticides (OC) (QCLot: 132685	9)					
ES1732021-001	QC1B	EP068: gamma-BHC	58-89-9	0.5 mg/kg	97.5	70	130
		EP068: Heptachlor	76-44-8	0.5 mg/kg	89.3	70	130
		EP068: Aldrin	309-00-2	0.5 mg/kg	107	70	130
		EP068: Dieldrin	60-57-1	0.5 mg/kg	83.4	70	130
		EP068: Endrin	72-20-8	2 mg/kg	104	70	130
		EP068: 4.4`-DDT	50-29-3	2 mg/kg	74.6	70	130
EP068B: Organoph	nosphorus Pesticides (OP) (QCLot: 132	6859)					
ES1732021-001	QC1B	EP068: Diazinon	333-41-5	0.5 mg/kg	88.2	70	130
		EP068: Chlorpyrifos-methyl	5598-13-0	0.5 mg/kg	77.9	70	130
		EP068: Pirimphos-ethyl	23505-41-1	0.5 mg/kg	110	70	130
		EP068: Bromophos-ethyl	4824-78-6	0.5 mg/kg	82.8	70	130
		EP068: Prothiofos	34643-46-4	0.5 mg/kg	89.4	70	130
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLo	ot: 1326862)					
ES1732021-001	QC1B	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	112	70	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	121	70	130
EP080/071: Total P	etroleum Hydrocarbons (QCLot: 13268						
ES1732021-001	QC1B	EP071: C10 - C14 Fraction		523 mg/kg	91.3	73	137
201102021 001		EP071: C15 - C28 Fraction		2319 mg/kg	108	53	131
		EP071: C29 - C36 Fraction		1714 mg/kg	121	52	132
EP080/071· Total P	etroleum Hydrocarbons (QCLot: 13280			0.0			
EP1714084-006	Anonymous	EP080: C6 - C9 Fraction		32.5 mg/kg	129	70	130
				52.0 mg/ng	120	10	100
	Recoverable Hydrocarbons - NEPM 2013			000	400	70	107
ES1732021-001	QC1B	EP071: >C10 - C16 Fraction		860 mg/kg	106	73	137
		EP071: >C16 - C34 Fraction		3223 mg/kg	114	53	131
		EP071: >C34 - C40 Fraction		1058 mg/kg	104	52	132
	Recoverable Hydrocarbons - NEPM 2013	Fractions (QCLot: 1328055)					
EP1714084-006	Anonymous	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	125	70	130
EP080: BTEXN (Q	CLot: 1328055)						
EP1714084-006	Anonymous	EP080: Benzene	71-43-2	2.5 mg/kg	106	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	105	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	108	70	130
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	107	70	130
			106-42-3				

Page	: 10 of 10
Work Order	: ES1732021
Client	: LAND & GROUNDWATER CONSULTING PTY LTD
Project	: LG17100.01

Sub-Matrix: SOIL	Matrix: SOIL							
			Spike	SpikeRecovery(%)	Recovery L	imits (%)		
Laboratory sample ID Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High		
EP080: BTEXN (QCLot: 1328055) - continued								
EP1714084-006 Anonymous	EP080: Naphthalene	91-20-3	2.5 mg/kg	94.2	70	130		

Chain of Custody Record

Project No:	LG17100.01			Lab:			SGS						T		A	NALYS	IS RFO	JUIRF	D		·	
	1-21 Dillwynnia Grove,	Haatbooto NEM	1	Lab Quote	No:		LGC141	106060					۵.						ī—			
Project/Site:	Gonzalo Parra	icalificite, NSW	·	Lab Batch									2	AH	1	Itio						
Sampled By: Phone:	0415 726 951			Date Resul		ed :	Standard	TAT					. č #	1×	1	fice					<u>`</u>	
	of 2			Sample Dis									AH, AH,	E E	Soil	uti 1						
Number of Eskie							AINER TY	PE & PR	ESERVA	ΓΙΥΕ			d / 8	15	e	5 ng						
	I		T	Soil	1	1			Water				1 28	E E	s	S						
LAB ID	SAMPLE ID	DATE	MATRIX	0.1-0.2 L Glass jar, unpreserved	- Plastic bag	0.1-0.2 Plastic, Filtered,	L 0.5-1.0 L Amber glass, unpreserved	40-50ml Glass, unprescrived	0.25-1 L Plastic, unpreserved	0.2-1.0L Plastic, sterile			CL 17: TRH/BTEX/PAH/OC/OP / PCB/8 Metals	CL 10: 8 Meta	Asbestos ID Soil	Asbestos Quantification	-					ногр
	BH10/0.2-0.3	14/12/17	Soil	1	1	HNO3			[x									
	BH10/1.5	14/12/17	Soil	1	1								· · .									Hold
	BH11/0.2-0.3	14/12/17	Soil	1	1								X									
	BH11/1.5	14/12/17	Soil	1	- · ·								· .								_	Hold
	BH12/0.2-0.3	14/12/17	Soil	1	1	1					[X		1	· _						
	BH12/1.5	14/12/17	Soil	1			-															Hold
	QC1A	14/12/17	Soil	1			1						×									
	QC2A	14/12/17	Soil	1	1.									X					1			1
	QC1B	14/12/17	Soil	·1 ,	1	1		1	{	1			x		Pleas	se seno	d to Al	.S				
	QC28	14/12/17	Soil	1	1						1		1									Hold
					1		-				:											
					1.										1	1						
					+			1				1	1	T		1	1		1 :			
				1				1	-		<u> </u>					1			1	1		
			+			<u> </u>		+		1	1								1			
			+					1	1		1	-						1	1		1	
				+				<u>† .</u>								ŤΕ	Envir	onm	onta	al Div	data	
	· · · · · · · · · · · · · · · · · · ·		-	1		-										5	Syrin	ο	i vine		ASICI	1
			+	+				1	1				1	1	1	1 7	Wo	rk Or	der D	lofara		
					+	1				1	1					1		C1	70			
			+		+			1							1		-	O I	10		121	1
		· .	-	<u> </u>	+		-							1	- <u></u>	-						
			+	+	+			1	1					1		-		1.15	14		11 11	1
							· . · · · · · ·			·		-	*****			-		11		101		l
								+	+	+			+		1			H I I	10 I	Ш.,		
						+			· · · · · · · · · · · · · · · · · · ·	· · · · · ·	1		1	+	+			N.	64	411		
									+		+		1		+		(1 11)	Ш¥	l Lí II	# 16 J		
	· · · · · · · · · · · · · · · · · · ·											+		+	+	Tele	ephone	: + 61	-2-8784	8555		
	· · · · · · · · · · · · · · · · · · ·				<u> </u>					+			+	╉╼╦	+					0000		
										-		+	-		+	1	1	<u> </u>	1	I.	F .	1
										+		·				+		-				
									<u> </u>	1				+	+	+	+	1	+	<u> </u>	<u> </u>	<u> </u>
		<u></u>	TOTAL	S . 10	3	Receive	d By:	<u> </u>	<u> </u>	1	!	Custo	dy Seal	s Intac	t	1	1	1	<u> </u>	Ψý	N	JA
Relinquished By: Gonzalo Parra				14/12/17		Mgou	and M	yound		15-12-1	7		s Receiv							<u>ن</u>	N	ح
		SIGNATURE		DATE		NAME		SIGNATU	IRE	13:00	DATE	Meth	od of St	Nipmen	t					15.4	70	
NAME	· · · · · · · · · · · · · · · · · · ·																					
NOTES:	Please send samples QC1B to	ALS														· · · · · · - ·						
Land & Ground	water Consulting Pty Ltd /	ABN 65 162 117	928		<u> </u>											web emai				www.lgo	consult.	com,a

Land & Groundwater Consulting Pty Ltd ABN 65 162 117 928 13/80-84 Illawarra Road Marrickville NSW 2204

email

ANALYTICAL REPORT

- CLIENT DETAILS	·	LABORATORY DE	TAILS
Contact	Gonzalo Parra	Manager	Huong Crawford
Client	LAND AND GROUNDWATER CONSULTING PTY LTD	Laboratory	SGS Alexandria Environmental
Address	131 B Riverview Road NSW 2204	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95598424	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	gparra@lgconsult.com.au	Email	au.environmental.sydney@sgs.com
Project	LG17100.01 Dillwynnia Grove, Heathcote	SGS Reference	SE173824 R0
Order Number	LGC141106060	Date Received	15/12/2017
Samples	3	Date Reported	21/12/2017

COMMENTS

Accredited for compliance with ISO/IEC 17025 - Testing. NATA accredited laboratory 2562(4354).

SIGNATORIES

Akheeqar Beniameen Chemist

kinty (

Ly Kim Ha Organic Section Head

Dong Liang Metals/Inorganics Team Leader

Teresa Nguyen Organic Chemist

Kamrul Ahsan Senior Chemist

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015 Australiat +61 2 8594 0400Australiaf +61 2 8594 0499

www.sgs.com.au

SE173824 R0

VOC's in Soil [AN433] Tested: 19/12/2017

			BH7/0.2-0.3	BH8/0.2-0.3	BH9/0.2-0.3
PARAMETER	UOM	LOR	SOIL - 15/12/2017 SE173824.001	SOIL - 15/12/2017 SE173824.002	SOIL - 15/12/2017 SE173824.003
Benzene	mg/kg	0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	<0.1
m/p-xylene	mg/kg	0.2	<0.2	<0.2	<0.2
o-xylene	mg/kg	0.1	<0.1	<0.1	<0.1
Total Xylenes	mg/kg	0.3	<0.3	<0.3	<0.3
Total BTEX	mg/kg	0.6	<0.6	<0.6	<0.6
Naphthalene	mg/kg	0.1	<0.1	<0.1	<0.1

Volatile Petroleum Hydrocarbons in Soil [AN433] Tested: 19/12/2017

			BH7/0.2-0.3	BH8/0.2-0.3	BH9/0.2-0.3
			SOIL	SOIL	SOIL
			-	-	-
			15/12/2017	15/12/2017	15/12/2017
PARAMETER	UOM	LOR	SE173824.001	SE173824.002	SE173824.003
TRH C6-C9	mg/kg	20	<20	<20	<20
Benzene (F0)	mg/kg	0.1	<0.1	<0.1	<0.1
TRH C6-C10	mg/kg	25	<25	<25	<25
TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	<25

TRH (Total Recoverable Hydrocarbons) in Soil [AN403] Tested: 16/12/2017

			BH7/0.2-0.3	BH8/0.2-0.3	BH9/0.2-0.3
			SOIL	SOIL	SOIL
			15/12/2017	15/12/2017	15/12/2017
PARAMETER	UOM	LOR	SE173824.001	SE173824.002	SE173824.003
TRH C10-C14	mg/kg	20	<20	<20	<20
TRH C15-C28	mg/kg	45	<45	<45	<45
TRH C29-C36	mg/kg	45	<45	<45	60
TRH C37-C40	mg/kg	100	<100	<100	<100
TRH >C10-C16 (F2)	mg/kg	25	<25	<25	<25
TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	<25
TRH >C16-C34 (F3)	mg/kg	90	<90	<90	91
TRH >C34-C40 (F4)	mg/kg	120	<120	<120	<120
TRH C10-C36 Total	mg/kg	110	<110	<110	<110
TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	<210

PAH (Polynuclear Aromatic Hydrocarbons) in Soil [AN420] Tested: 16/12/2017

			BH7/0.2-0.3	BH8/0.2-0.3	BH9/0.2-0.3
			SOIL	SOIL	SOIL
PARAMETER	UOM	LOR	15/12/2017	15/12/2017	15/12/2017
Naphthalene	mg/kg	0.1	SE173824.001	SE173824.002	SE173824.003
2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	<0.1
		0.1	<0.1	<0.1	<0.1
1-methylnaphthalene	mg/kg	-	-	-	
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	0.1
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	0.1	<0.1	<0.1	0.1
Anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1
Pyrene	mg/kg	0.1	<0.1	<0.1	0.2
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	0.2
Chrysene	mg/kg	0.1	<0.1	<0.1	0.1
Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1
Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	0.1
Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	0.2
Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	0.1
Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	<0.1
Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	0.1
Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.2</td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.2
Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>0.3</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	0.3
Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>0.3</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	0.3
Total PAH (18)	mg/kg	0.8	<0.8	<0.8	1.5
Total PAH (NEPM/WHO 16)	mg/kg	0.8	<0.8	<0.8	1.5

SE173824 R0

OC Pesticides in Soil [AN420] Tested: 16/12/2017

			BH7/0.2-0.3	BH8/0.2-0.3	BH9/0.2-0.3
			SOIL -	SOIL -	SOIL -
PARAMETER	UOM	LOR	15/12/2017	15/12/2017	15/12/2017
Hexachlorobenzene (HCB)	mg/kg	0.1	SE173824.001 <0.1	SE173824.002	SE173824.003 <0.1
Alpha BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Lindane	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1
Beta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Delta BHC	mg/kg	0.1	<0.1	<0.1	<0.1
Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1
trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDE	mg/kg	0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	0.2	<0.2	<0.2	<0.2
Endrin	mg/kg	0.2	<0.2	<0.2	<0.2
o,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
o,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	<0.2
p,p'-DDD	mg/kg	0.1	<0.1	<0.1	<0.1
p,p'-DDT	mg/kg	0.1	<0.1	<0.1	<0.1
Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1
Endrin Ketone	mg/kg	0.1	<0.1	<0.1	<0.1
Isodrin	mg/kg	0.1	<0.1	<0.1	<0.1
Mirex	mg/kg	0.1	<0.1	<0.1	<0.1
Total CLP OC Pesticides	mg/kg	1	<1	<1	<1

OP Pesticides in Soil [AN420] Tested: 16/12/2017

			BH7/0.2-0.3	BH8/0.2-0.3	BH9/0.2-0.3
			SOIL	SOIL	SOIL
			-	-	-
PARAMETER	UOM	LOR	15/12/2017	15/12/2017	15/12/2017
PARAMETER	UOW		SE173824.001	SE173824.002	SE173824.003
Dichlorvos	mg/kg	0.5	<0.5	<0.5	<0.5
Dimethoate	mg/kg	0.5	<0.5	<0.5	<0.5
Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	<0.5
Fenitrothion	mg/kg	0.2	<0.2	<0.2	<0.2
Malathion	mg/kg	0.2	<0.2	<0.2	<0.2
Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	<0.2
Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	<0.2
Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	<0.2
Methidathion	mg/kg	0.5	<0.5	<0.5	<0.5
Ethion	mg/kg	0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	<0.2
Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	<1.7

PCBs in Soil [AN420] Tested: 16/12/2017

			BH7/0.2-0.3	BH8/0.2-0.3	BH9/0.2-0.3
			SOIL	SOIL	SOIL
			15/12/2017	15/12/2017	15/12/2017
PARAMETER	UOM	LOR	SE173824.001	SE173824.002	SE173824.003
Arochlor 1016	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1221	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1232	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1242	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1248	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1254	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1260	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1262	mg/kg	0.2	<0.2	<0.2	<0.2
Arochlor 1268	mg/kg	0.2	<0.2	<0.2	<0.2
Total PCBs (Arochlors)	mg/kg	1	<1	<1	<1

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES [AN040/AN320] Tested: 19/12/2017

			BH7/0.2-0.3	BH8/0.2-0.3	BH9/0.2-0.3
			SOIL	SOIL	SOIL
			15/12/2017	15/12/2017	15/12/2017
PARAMETER	UOM	LOR	SE173824.001	SE173824.002	SE173824.003
Arsenic, As	mg/kg	3	7	4	10
Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	0.4
Chromium, Cr	mg/kg	0.3	28	2.0	47
Copper, Cu	mg/kg	0.5	12	160	31
Lead, Pb	mg/kg	1	13	4	50
Nickel, Ni	mg/kg	0.5	3.4	3.7	10
Zinc, Zn	mg/kg	0.5	97	24	100

Mercury in Soil [AN312] Tested: 19/12/2017

			BH7/0.2-0.3	BH8/0.2-0.3	BH9/0.2-0.3
			SOIL	SOIL	SOIL
			15/12/2017	15/12/2017	15/12/2017
PARAMETER	UOM	LOR	SE173824.001	SE173824.002	SE173824.003
Mercury	mg/kg	0.05	<0.05	<0.05	0.06

Moisture Content [AN002] Tested: 18/12/2017

			BH7/0.2-0.3	BH8/0.2-0.3	BH9/0.2-0.3
			SOIL	SOIL	SOIL
			15/12/2017	15/12/2017	15/12/2017
PARAMETER	UOM	LOR	SE173824.001	SE173824.002	SE173824.003
% Moisture	%w/w	0.5	6.0	1.8	19

METHOD	METHODOLOGY SUMMARY
AN002	The test is carried out by drying (at either 40°C or 105°C) a known mass of sample in a weighed evaporating basin. After fully dry the sample is re-weighed. Samples such as sludge and sediment having high percentages of moisture will take some time in a drying oven for complete removal of water.
AN040/AN320	A portion of sample is digested with nitric acid to decompose organic matter and hydrochloric acid to complete the digestion of metals. The digest is then analysed by ICP OES with metals results reported on the dried sample basis. Based on USEPA method 200.8 and 6010C.
AN040	A portion of sample is digested with Nitric acid to decompose organic matter and Hydrochloric acid to complete the digestion of metals and then filtered for analysis by ASS or ICP as per USEPA Method 200.8.
AN312	Mercury by Cold Vapour AAS in Soils: After digestion with nitric acid, hydrogen peroxide and hydrochloric acid, mercury ions are reduced by stannous chloride reagent in acidic solution to elemental mercury. This mercury vapour is purged by nitrogen into a cold cell in an atomic absorption spectrometer or mercury analyser. Quantification is made by comparing absorbances to those of the calibration standards. Reference APHA 3112/3500
AN403	Total Recoverable Hydrocarbons: Determination of Hydrocarbons by gas chromatography after a solvent extraction. Detection is by flame ionisation detector (FID) that produces an electronic signal in proportion to the combustible matter passing through it. Total Recoverable Hydrocarbons (TRH) are routinely reported as four alkane groupings based on the carbon chain length of the compounds: C6-C9, C10-C14, C15-C28 and C29-C36 and in recognition of the NEPM 1999 (2013), >C10-C16 (F2), >C16-C34 (F3) and >C34-C40 (F4). F2 is reported directly and also corrected by subtracting Naphthalene (from VOC method AN433) where available.
AN403	Additionally, the volatile C6-C9 fraction may be determined by a purge and trap technique and GC/MS because of the potential for volatiles loss. Total Petroleum Hydrocarbons (TPH) follows the same method of analysis after silica gel cleanup of the solvent extract. Aliphatic/Aromatic Speciation follows the same method of analysis after fractionation of the solvent extract over silica with differential polarity of the eluent solvents.
AN403	The GC/FID method is not well suited to the analysis of refined high boiling point materials (ie lubricating oils or greases) but is particularly suited for measuring diesel, kerosene and petrol if care to control volatility is taken. This method will detect naturally occurring hydrocarbons, lipids, animal fats, phenols and PAHs if they are present at sufficient levels, dependent on the use of specific cleanup/fractionation techniques. Reference USEPA 3510B, 8015B.
AN420	(SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols (etc) in soils, sediments and waters are determined by GCMS/ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN420	SVOC Compounds: Semi-Volatile Organic Compounds (SVOCs) including OC, OP, PCB, Herbicides, PAH, Phthalates and Speciated Phenols in soils, sediments and waters are determined by GCMS /ECD technique following appropriate solvent extraction process (Based on USEPA 3500C and 8270D).
AN433	VOCs and C6-C9 Hydrocarbons by GC-MS P&T: VOC's are volatile organic compounds. The sample is presented to a gas chromatograph via a purge and trap (P&T) concentrator and autosampler and is detected with a Mass Spectrometer (MSD). Solid samples are initially extracted with methanol whilst liquid samples are processed directly. References: USEPA 5030B, 8020A, 8260.

FOOTNOTES -

 * NATA accreditation does not cover the performance of this service.
 ** Indicative data, theoretical holding time exceeded Not analysed.
 NVL Not validated.
 IS Insufficient sample for analysis.
 LNR Sample listed, but not received.

 UOM
 Unit of Measure.

 LOR
 Limit of Reporting.

 ↑↓
 Raised/lowered Limit of Reporting.

Samples analysed as received. Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calculated by summing the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg, the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the "Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS-SOP, radionuclide or gross radioactivity concentrations are expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one nuclear transformation per second.

Note that in terms of units of radioactivity:

- a. 1 Bq is equivalent to 27 pCi
- b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS-SOP, less than (<) values indicate the detection limit for each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO 11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here : <u>http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf</u>

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This report must not be reproduced, except in full.

STATEMENT OF QA/QC PERFORMANCE

CLIENT DETAILS		LABORATORY DETAI	ILS
Contact	Gonzalo Parra	Manager	Huong Crawford
Client	LAND AND GROUNDWATER CONSULTING PTY LTD	Laboratory	SGS Alexandria Environmental
Address	131 B Riverview Road NSW 2204	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95598424	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	gparra@lgconsult.com.au	Email	au.environmental.sydney@sgs.com
Project	LG17100.01 Dillwynnia Grove, Heathcote	SGS Reference	SE173824 R0
Order Number	LGC141106060	Date Received	15 Dec 2017
Samples	3	Date Reported	27 Dec 2017

COMMENTS

All the laboratory data for each environmental matrix was compared to SGS' stated Data Quality Objectives (DQO). Comments arising from the comparison were made and are reported below.

The data relating to sampling was taken from the Chain of Custody document and was supplied by the Client. This QA/QC Statement must be read in conjunction with the referenced Analytical Report. The Statement and the Analytical Report must not be reproduced except in full.

All Data Quality Objectives were met with the exception of the following:

Duplicate

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

4 items

amples clearly labelled ample container provider amples received in correct ate documentation receive amples received in good or ample temperature upon re urnaround time requested	d ⁻ der	Yes SGS Yes 15/12/2(Yes 7.3°C Standard	Sample c Sample c 117 Type of d Samples Sufficient	documentation received ooling method ounts by matrix ocumentation received received without headspace sample for analysis		Yes Ice Bricks 3 Soil COC Yes Yes	
SGS Australia Pty Ltd ABN 44 000 964 278	Environment, Health	and Safety	Unit 16 33 Maddox St PO Box 6432 Bourke Rd B(Alexandria NSW 2015 Alexandria NSW 2015	Australia Australia	t +61 2 8594 0400 f +61 2 8594 0499	www.sgs.com.a

SGS holding time criteria are drawn from current regulations and are highly dependent on sample container preservation as specified in the SGS "Field Sampling Guide for Containers and Holding Time" (ref: GU-(AU)-ENV.001). Soil samples guidelines are derived from NEPM "Schedule B(3) Guideline on Laboratory Analysis of Potentially Contaminated Soils". Water sample guidelines are derived from "AS/NZS 5667.1 : 1998 Water Quality - sampling part 1" and APHA "Standard Methods for the Examination of Water and Wastewater" 21st edition 2005.

Extraction and analysis holding time due dates listed are calculated from the date sampled, although holding times may be extended after laboratory extraction for some analytes. The due dates are the suggested dates that samples may be held before extraction or analysis and still be considered valid.

Extraction and analysis dates are shown in Green when within suggested criteria or **Red** with an appended dagger symbol (†) when outside suggested criteria. If the sampled date is not supplied then compliance with criteria cannot be determined. If the received date is after one or both due dates then holding time will fail by default.

BRTR28.00BISTR28.00<	Mercury in Soil							Method:	ME-(AU)-[ENV]AN312
9H00.2.3.BH7384.0.02L.313910L.913911Si Dee 201711.2 Jan.21011.2	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BR00.20Br1704.00Br1804.00C Ran (DBr00.20C Ran (DC Ran (D <td>BH7/0.2-0.3</td> <td>SE173824.001</td> <td>LB138910</td> <td>15 Dec 2017</td> <td>15 Dec 2017</td> <td>12 Jan 2018</td> <td>19 Dec 2017</td> <td>12 Jan 2018</td> <td>21 Dec 2017</td>	BH7/0.2-0.3	SE173824.001	LB138910	15 Dec 2017	15 Dec 2017	12 Jan 2018	19 Dec 2017	12 Jan 2018	21 Dec 2017
colstan Sample Name <	BH8/0.2-0.3	SE173824.002	LB138910	15 Dec 2017	15 Dec 2017	12 Jan 2018	19 Dec 2017	12 Jan 2018	21 Dec 2017
Sample Name Sample No. O.C. Ref. Sample d. Received Extraction Due Extraction Processing of the procesing of the processing of the processing of the processi	BH9/0.2-0.3	SE173824.003	LB138910	15 Dec 2017	15 Dec 2017	12 Jan 2018	19 Dec 2017	12 Jan 2018	21 Dec 2017
BHC PAGA 0.1 BHT 288 0.01 BHT 288 0.01<	Moisture Content							Method:	ME-(AU)-[ENV]AN002
Balea 2.3 ET 73B.20.02 LB 13B46 19 Dec 2017 19 Dec 2017 29 Dec 2017 19 Dec 2017 20 Dec 201	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
Bin De 201SE 173824.03LB 138461 is Dee 20171 is Dee 20171 is Dee 20171 is Dee 20172 D	BH7/0.2-0.3	SE173824.001	LB138848	15 Dec 2017	15 Dec 2017	29 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
Schwart Sample Name <	BH8/0.2-0.3	SE173824.002	LB138848	15 Dec 2017	15 Dec 2017	29 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
Sample Name Sample No. QC Ref Sample Mam Extraction Dus	BH9/0.2-0.3	SE173824.003	LB138848	15 Dec 2017	15 Dec 2017	29 Dec 2017	18 Dec 2017	23 Dec 2017	20 Dec 2017
BPT02.0.3 BFT3242.001 LB138746 15 Dec 2017 15 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BPB02.0.3 SET73242.003 LB138748 15 Dec 2017 15 Dec 2017 25 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 Prediction SET7324.003 LB138748 15 Dec 2017 15 Dec 2017 25 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 Brande Name Sample No. OC Ref Sample No. DC Ref Sample No. DC Ref Analysed Brande Name Sample No. OC Ref Sample No. DC Ref Sample No. DC Ref Nanlysed Brande Name Sample No. OC Ref Sample No. DC Ref Sample No. DC Ref Nanlysed <	OC Pesticides in Soll							Method:	ME-(AU)-[ENV]AN420
BH90.9.0.3Str 7384.002Lef 1397416 bec 201715 bec 201715 bec 201716 bec 201716 bec 201716 bec 201725 bec 2017	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BHB02.03SE 17382.003LB13874815 Dec 201715 Dec 201729 Dec 201716 Dec 201729 Lan 201821 Dec 2017OP PedictsSample NamC R RReceivedExtracted DuoExtracted Analysis DuoAnalyse DuoBH802.03SE 17382.003LB13874815 Dec 201715 Dec 201729 Dec 201716 Dec 201725 Jan 201821 Dec 2017BH802.03SE 17382.003LB13874816 Dec 201715 Dec 201729 Dec 201716 Dec 201725 Jan 201821 Dec 2017All PeducatorDec 201715 Dec 201719 Dec 201716 Dec 201725 Jan 201821 Dec 2017All PeducatorDec 201715 Dec 201719 Dec 201716 Dec 201725 Jan 201821 Dec 2017All PeducatorDec 201715 Dec 201719 Dec 201716 Dec 201725 Jan 201821 Dec 2017B180.2.03SE 17382.003LB13874816 Dec 201715 Dec 201729 Dec 201716 Dec 201725 Jan 201821 Dec 2017B180.2.03SE 17382.003LB13874816 Dec 201715 Dec 201729 Dec 201716 Dec 201725 Jan 201821 Dec 2017B180.2.03SE 17382.003LB13874816 Dec 201715 Dec 201729 Dec 201716 Dec 201725 Jan 201821 Dec 2017B180.2.03SE 17382.003LB13874816 Dec 201715 Dec 201729 Dec 201716 Dec 201725 Jan 201821 Dec 2017B180.2.03SE 17382.003LB13874816 Dec 201715 Dec 201713 Jan 201810 Dec 201725 Jan	BH7/0.2-0.3	SE173824.001	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
CP Petidise in Sol Simple No. Q R Simple No. Resolved Extraction Extraction Analysis Do. Analysis Do. Simple No. Simple No. Q R Simple No. Pice N	BH8/0.2-0.3	SE173824.002	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysed Analysed BH70 20.3 SE 17384.001 E193948 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH80 20.3 SE 17384.002 E193948 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 SAH (Polynoclar Abrahl) nSoll SE 17384.002 E193948 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 SAH (Polynoclar Abrahl) nSoll GC Ref Sample No. QC Ref Sample No. <td>BH9/0.2-0.3</td> <td>SE173824.003</td> <td>LB138748</td> <td>15 Dec 2017</td> <td>15 Dec 2017</td> <td>29 Dec 2017</td> <td>16 Dec 2017</td> <td>25 Jan 2018</td> <td>21 Dec 2017</td>	BH9/0.2-0.3	SE173824.003	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
BH702.0.3 SF17982.001 LB189740 15 Dec 2017 15 Dec 2017 16 Dec 2017 16 Dec 2017 16 Dec 2017 25 Jen 2018 21 Dec 2017 BH80.2.4.3 SE17982.000 LB189740 15 Dec 2017 15 Dec 2017 20 Dec 2017 16 Dec 2017 25 Jen 2018 21 Dec 2017 SH00.2.4.3 SE17982.000 LB189740 15 Dec 2017 20 Dec 2017 16 Dec 2017 25 Jen 2018 21 Dec 2017 SAMPIO NANO SE17982.001 LB189748 15 Dec 2017 15 Dec 2017 20 Dec 2017 16 Dec 2017 25 Jen 2018 21 Dec 2017 BH90.2.0.3 SE17982.002 LB189748 15 Dec 2017 15 Dec 2017 20 Dec 2017 16 Dec 2017 25 Jen 2018 21 Dec 2017 CB1000 SE17982.002 LB189748 15 Dec 2017 15 Dec 2017 20 Dec 2017 16 Dec 2017 25 Jen 2018 21 Dec 2017 CB1010 SE17982.002 LB18974 15 Dec 2017 15 Dec 2017 20 Dec 2017 16 Dec 2017 25 Jen 2018 21 Dec 2017 BH02.0.3 SE17982.001 LB18974 15 Dec 2017 15 Dec 2017 20 Dec 2017 16 Dec 2017 25 Jen 2018 21 Dec 20	OP Pesticides in Soil							Method:	ME-(AU)-[ENV]AN42
BH802.0.3 SF17824.002 LB18974 15 Dec 2017 15 Dec 2017 26 Dec 2017 16 Dec 2017 25 Jen 2018 21 Dec 2017 BH80.2.0.3 SE173824.002 LB18776 Dec 2017 15 Dec 2017 25 Dec 2017 16 Dec 2017 25 Jen 2018 21 Dec 2017 Stample Name Sample No. O C Rof Sample No. D C Rof Sample	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH300 2.0.3 SE [73824.003 LB 138748 15 Dec 2017 15 Dec 2017 16 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 AH (Portundier Aromatic Hydrocarboro) in Soll Method: MECAUD/ENV/MADE Sample No. QC Ref	BH7/0.2-0.3	SE173824.001	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
Art Arterior Description Description <thdescription< th=""> <thdescription< th=""> <thdescrip< td=""><td>BH8/0.2-0.3</td><td>SE173824.002</td><td>LB138748</td><td>15 Dec 2017</td><td>15 Dec 2017</td><td>29 Dec 2017</td><td>16 Dec 2017</td><td>25 Jan 2018</td><td>21 Dec 2017</td></thdescrip<></thdescription<></thdescription<>	BH8/0.2-0.3	SE173824.002	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysis de BH70.2-0.3 SE173824.001 LB189748 15 Dec 2017 15 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH90.2-0.3 SE173824.003 LB189748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 CDs in Soli Control Set173824.003 LB189748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 CDs in Soli Set173824.001 LB189748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH90.2-0.3 SE173824.002 LB189748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH90.2-0.3 SE173824.002 LB189748 15 Dec 2017 15 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH90.2-0.3 SE173824.002 LB189874 15 Dec 2017 15 Dec 2	BH9/0.2-0.3	SE173824.003	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
BH70.2-0.3 SE173824.001 LB188748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH80.2-0.3 SE173824.002 LB18748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH80.2-0.3 SE173824.002 LB18748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 Semple Name Sample No. C Ref Sample No C Ref Sample No Extraction Due Extracted Analysis Due	PAH (Polynuclear Aromati	c Hydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN420
BH80.2-0.3 SE 173824.002 LB138748 15 Dec 2017 15 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 CB400.2-0.3 SE 173824.003 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 CB3 In SOIL Sample No. Q C R of Sample No. Q C R of Sample No. Part Source Sample No. Q L R of Sample No. Part Source Sample No. Q C R of Sa	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH90.2-0.3 SE 173824 003 LB 188748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 CDS Sample Name Sample No. QC Ref Sample No. Received Extraction Due Extracted Analysis Due Analysed BH70.2-0.3 SE 173824.002 LB 138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH90.2-0.3 SE 173824.002 LB 138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH90.2-0.3 SE 173824.001 LB 138748 15 Dec 2017 15 Dec 2017 16 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH90.2-0.3 SE 173824.001 LB 138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH90.2-0.3 SE 173824.001 LB 138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH90.2-0.3 SE 173824.001	BH7/0.2-0.3	SE173824.001	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
Clas in Soll Method: ME - (AL) - [ENV]ANA2 Sample Name Sample No. QC Ref Sample Mole 2017 15 Dec 2017 19 Dec 2017 29 Dec 2017 19 Dec 2017 25 Jan 2018 21 Dec 2017 BH/0 2-0.3 SE173824 003 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH/0 2-0.3 SE173824 003 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 Cold SE173824 003 LB138748 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 Sample Name Sample No. OC Ref Sample O217 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH/0 2-0.3 SE173824 003 LB138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH/0 2-0.3 SE173824 003 LB138917 15 Dec 2017 15 Dec 2017 <td>BH8/0.2-0.3</td> <td>SE173824.002</td> <td>LB138748</td> <td>15 Dec 2017</td> <td>15 Dec 2017</td> <td>29 Dec 2017</td> <td>16 Dec 2017</td> <td>25 Jan 2018</td> <td>21 Dec 2017</td>	BH8/0.2-0.3	SE173824.002	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
Sample Name Sample No. QC Ref Sample dependence Extraction Due Extracted Analysis Due Analysed BH70.2.0.3 SE173824.001 LB193748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH80.2.0.3 SE173824.001 LB193748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 Total Recoverable Elements in Solt/Waste Solds/Materials by ICPOES Method: ME-(AU)-(ENV/AN040/AN32 SE173824.001 LB198917 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH90.2.0.3 SE173824.001 LB198917 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH90.2.0.3 SE173824.002 LB198917 15 Dec 2017 15 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH90.2.0.3 SE173824.003 LB138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH90.2.0.3 SE173824.003 LB138917 15 Dec 20	BH9/0.2-0.3	SE173824.003	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
BH702-2-3.3 SE 173824.001 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH802-2-3.3 SE 173824.002 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH902-0.3 SE 173824.002 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 Sample Name Sample No. QC Ref Sample QL17 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH902-0.3 SE 173824.001 LB138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH902-0.3 SE 173824.001 LB138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH902-0.3 SE 173824.001 LB138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH902-0.3 SE 173824.001 LB138917 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 <td>PCBs in Soil</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Method:</td> <td>ME-(AU)-[ENV]AN420</td>	PCBs in Soil							Method:	ME-(AU)-[ENV]AN420
BH80.2-0.3 SE 173824.002 LB 138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH90.2-0.3 SE 173824.003 LB 138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 Coll Sample No. QC Ref Sample No. Analysel Duc Analysel Duc Analysel Duc Analysel Duc Analysel Duc Analysel Duc Duc Duc	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH90.2-0.3 SE 173824.003 LB 138748 15 Dec 2017 16 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 Fotal Recoverable Elements In Soll/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN32 Sample Name Sample No. QC Ref Sample Q Extraction Due Extracted Analysis Due Analysed BH70.2-0.3 SE 173824.001 LB 138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH90.2-0.3 SE 173824.003 LB 138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 RH90.2-0.3 SE 173824.003 LB 138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 RH7 (Total Recoverable Hydrocarborns) in Sol Method: KetAUD-[ENV]/NAV0 Method: KetAUD-[ENV]/NAV0 Method: KetAUD-[ENV]/NAV0 Sample Name Sample No. QC Ref Sample QL Sample Q	BH7/0.2-0.3	SE173824.001	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
Method: Method: Modelals by ICPOES Method: Met	BH8/0.2-0.3	SE173824.002	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH70.2-0.3 SE173824.001 LB138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH80.2-0.3 SE173824.002 LB138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH90.2-0.3 SE173824.002 LB138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 RH90.2-0.3 SE173824.003 LB138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 RH0(7:041 Recoverable Hydrocarbons) in Soll SE173824.003 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE173824.002 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE173824.002 LB	BH9/0.2-0.3	SE173824.003	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
BH70.2-0.3 SE 173824.001 LB 138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH80.2-0.3 SE 173824.002 LB 138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH90.2-0.3 SE 173824.002 LB 138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 RH (Cotal Recoverable Hydrocarbors) in Scit T Semple Amme Sample No. QC Ref Sample Qu 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE 173824.003 LB 138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE 173824.003 LB 138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE 173824.003 LB 13874 15 Dec 2017 15 Dec 2017 19 Dec 2017 26 Jan 2018 21 Dec 2017 BH8/0.2-0.3	Total Recoverable Elemen	ts in Soil/Waste Solids/Ma	terials by ICPOES					Method: ME-(AU)-[ENV]AN040/AN32
BH8/0.2-0.3 SE 173824.002 LB 138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 BH9/0.2-0.3 SE 173824.003 LB 138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 TRH (Total Recoverable Hydrocarbons) In Soll Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH7/0.2-0.3 SE 173824.001 LB 138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE 173824.002 LB 138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE 173824.002 LB 138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE 173824.003 LB 13874 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE 173824.001 <td>Sample Name</td> <td>Sample No.</td> <td>QC Ref</td> <td>Sampled</td> <td>Received</td> <td>Extraction Due</td> <td>Extracted</td> <td>Analysis Due</td> <td>Analysed</td>	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH9/0.2-0.3 SE173824.003 LB138917 15 Dec 2017 15 Dec 2017 13 Jun 2018 19 Dec 2017 13 Jun 2018 21 Dec 2017 RH (Total Recoverable Hydrocarbons) in Soll Method: HE-(AU)-(ENV/AM40 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysid BH7/0.2-0.3 SE173824.001 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 OC's in Soll Sample No. QC Ref Sample No 20 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 Sample Name Sample No. QC Ref Sample No Received Extraction Due Extracted Analysis Due Analysed BH/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 19 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 <tr< td=""><td>BH7/0.2-0.3</td><td>SE173824.001</td><td>LB138917</td><td>15 Dec 2017</td><td>15 Dec 2017</td><td>13 Jun 2018</td><td>19 Dec 2017</td><td>13 Jun 2018</td><td>21 Dec 2017</td></tr<>	BH7/0.2-0.3	SE173824.001	LB138917	15 Dec 2017	15 Dec 2017	13 Jun 2018	19 Dec 2017	13 Jun 2018	21 Dec 2017
TH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN40 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH7/0.2-0.3 SE173824.001 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE173824.002 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE173824.003 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 VCC's in Soil Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018	BH8/0.2-0.3	SE173824.002	LB138917	15 Dec 2017	15 Dec 2017	13 Jun 2018	19 Dec 2017	13 Jun 2018	21 Dec 2017
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH7/0.2-0.3 SE173824.001 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE173824.003 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 OC's in Soil	BH9/0.2-0.3	SE173824.003	LB138917	15 Dec 2017	15 Dec 2017	13 Jun 2018	19 Dec 2017	13 Jun 2018	21 Dec 2017
BH7/0.2-0.3 SE173824.001 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE173824.003 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 OC's in Soil Method: ME-(AU)-[ENV]AN43 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.003 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 Colatile Petroleum Hydrocarbons in Soil Se173824.001 LB138871	TRH (Total Recoverable H	lydrocarbons) in Soil						Method:	ME-(AU)-[ENV]AN40
BH8/0.2-0.3 SE173824.002 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE173824.003 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 /OC's in Soil Method: ME-(AU)-[ENV]AN43 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 19 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.003 LB138871 15 Dec 2017 15 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analyseid 21 Dec 2017 Sample Name Sample No. QC Ref Sa	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
BH90.2-0.3 SE173824.003 LB138748 15 Dec 2017 15 Dec 2017 29 Dec 2017 16 Dec 2017 25 Jan 2018 21 Dec 2017 /OC's in Soil Method: ME-(AU)-[ENV]AN43 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE173824.003 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analyseid 21 Dec 2017 Soldtile Petroleum Hydrocarbons In Soil Method: ME-(AU)-[ENV]AN43 Sample Name Sample No. QC Ref Sampled Received Extraction D	BH7/0.2-0.3	SE173824.001	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
VOC's in Soil Method: ME-(AU)-[ENV]AN43 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE173824.003 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 Kottbid: Petroleum Hydrocarbons In Soil Vector 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analyseid BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH7/0.2-0.3 SE173824.001	BH8/0.2-0.3	SE173824.002	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE173824.003 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 c/datile Petroleum Hydrocarbons in Soil Method: ME-(AU)-(ENV)AN43 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 Sample Name Sample No. QC Ref Sample Oligon Second Extraction Due Extracted Analysis Due Analysed	BH9/0.2-0.3	SE173824.003	LB138748	15 Dec 2017	15 Dec 2017	29 Dec 2017	16 Dec 2017	25 Jan 2018	21 Dec 2017
BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE173824.003 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 Adatile Petroleum Hydrocarbons in Soil Sample No. QC Ref Sample dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3<	VOC's in Soil							Method:	ME-(AU)-[ENV]AN43
BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH9/0.2-0.3 SE173824.003 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 Adatile Petroleum Hydrocarbors in Soil Sample No. QC Ref Sample Of Sample	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Du <u>e</u>	Analysed
BH9/0.2-0.3 SE173824.003 LB138871 15 Dec 2017 15 Dec 2017 19 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 /olatile Petroleum Hydrocarbors in Soil Sample No. QC Ref Sample d Received Extraction Due Extracted Analysed BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 19 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017	BH7/0.2-0.3	SE173824.001	LB138871	15 Dec 2017	15 Dec 2017	29 Dec 2017	19 Dec 2017	28 Jan 2018	21 Dec 2017
Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN43 Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017	BH8/0.2-0.3	SE173824.002	LB138871	15 Dec 2017	15 Dec 2017	29 Dec 2017	19 Dec 2017	28 Jan 2018	21 Dec 2017
Sample Name Sample No. QC Ref Sampled Received Extraction Due Extracted Analysis Due Analysed BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017	BH9/0.2-0.3	SE173824.003	LB138871	15 Dec 2017	15 Dec 2017	29 Dec 2017	19 Dec 2017	28 Jan 2018	21 Dec 2017
BH7/0.2-0.3 SE173824.001 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017 BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017	Volatile Petroleum Hydroc	arbons in Soil						Method:	ME-(AU)-[ENV]AN43
BH8/0.2-0.3 SE173824.002 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017	Sample Name	Sample No.	QC Ref	Sampled	Received	Extraction Due	Extracted	Analysis Due	Analysed
	BH7/0.2-0.3	SE173824.001	LB138871	15 Dec 2017	15 Dec 2017	29 Dec 2017	19 Dec 2017	28 Jan 2018	21 Dec 2017
BH9/0.2-0.3 SE173824.003 LB138871 15 Dec 2017 15 Dec 2017 29 Dec 2017 19 Dec 2017 28 Jan 2018 21 Dec 2017	BH8/0.2-0.3	SE173824.002	LB138871	15 Dec 2017	15 Dec 2017	29 Dec 2017	19 Dec 2017	28 Jan 2018	21 Dec 2017
	BH9/0.2-0.3	SE173824.003	LB138871	15 Dec 2017	15 Dec 2017	29 Dec 2017	19 Dec 2017	28 Jan 2018	21 Dec 2017

SURROGATES

Surrogate results are evaluated against upper and lower limit criteria established in the SGS QA/QC plan (Ref: MP-(AU)-[ENV]QU-022). At least two of three routine level soil sample surrogate spike recoveries for BTEX/VOC are to be within 70-130% where control charts have not been developed and within the established control limits for charted surrogates. Matrix effects may void this as an acceptance criterion. Water sample surrogate spike recoveries are to be within 40-130%. The presence of emulsions, surfactants and particulates may void this as an acceptance criterion.

Result is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

DC Pesticides in Soil				Method: M	E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery %
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH7/0.2-0.3	SE173824.001	%	60 - 130%	100
	BH8/0.2-0.3	SE173824.002	%	60 - 130%	92
	BH9/0.2-0.3	SE173824.003	%	60 - 130%	96
P Pesticides in Soil	510/0.2 0.0	02110024.000	//		E-(AU)-[ENV]AN
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery ^o
2-fluorobiphenyl (Surrogate)	BH7/0.2-0.3	SE173824.001	%	60 - 130%	84
	BH8/0.2-0.3	SE173824.002	%	60 - 130%	90
d14-p-terphenyl (Surrogate)	BH9/0.2-0.3 BH7/0.2-0.3	SE173824.003 SE173824.001	%	60 - 130% 60 - 130%	82
u 14-p-terprienyi (Surrogate)	BH8/0.2-0.3	SE173824.001	%	60 - 130%	90
	BH9/0.2-0.3	SE173824.003	%	60 - 130%	84
All (Behmudeer Arometic Hydroesteere) in Seil	516/0.2-0.3	3E 173024.003	70		
AH (Polynuclear Aromatic Hydrocarbons) in Soil	0l- N	O - marke Market	11 14		E-(AU)-[ENV]AN
arameter	Sample Name	Sample Number	Units	Criteria	Recovery
2-fluorobiphenyl (Surrogate)	BH7/0.2-0.3	SE173824.001	%	70 - 130%	<u>84</u> 90
	BH8/0.2-0.3	SE173824.002		70 - 130%	
dd (n ferskenul (Currenale)	BH9/0.2-0.3	SE173824.003	%	70 - 130%	82
d14-p-terphenyl (Surrogate)	BH7/0.2-0.3 BH8/0.2-0.3	SE173824.001 SE173824.002	%	70 - 130% 70 - 130%	86 90
	BH9/0.2-0.3	SE173824.002	%	70 - 130%	84
d5-nitrobenzene (Surrogate)	BH7/0.2-0.3	SE173824.001	%	70 - 130%	78
do-fill obenzene (ounogale)	BH8/0.2-0.3	SE173824.002	%	70 - 130%	82
	BH9/0.2-0.3	SE173824.002	%	70 - 130%	74
CBs in Soil	510,0.2 0.0	024.000	70		
	O-mula Nome	O - marke Market	11 14		E-(AU)-[ENV]AI
varameter	Sample Name	Sample Number	Units	Criteria	Recovery
Tetrachloro-m-xylene (TCMX) (Surrogate)	BH7/0.2-0.3	SE173824.001	%	60 - 130%	100
	BH8/0.2-0.3	SE173824.002	%	60 - 130%	92
	BH9/0.2-0.3	SE173824.003	%	60 - 130%	96
OC's in Soil					E-(AU)-[ENV]AI
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	BH7/0.2-0.3	SE173824.001	%	60 - 130%	77
	BH8/0.2-0.3	SE173824.002	%	60 - 130%	77
	BH9/0.2-0.3	SE173824.003	%	60 - 130%	75
d4-1,2-dichloroethane (Surrogate)	BH7/0.2-0.3	SE173824.001	%	60 - 130%	91
	BH8/0.2-0.3	SE173824.002	%	60 - 130%	76
	BH9/0.2-0.3	SE173824.003	%	60 - 130%	94
d8-toluene (Surrogate)	BH7/0.2-0.3	SE173824.001	%	60 - 130%	80
	BH8/0.2-0.3	SE173824.002	%	60 - 130%	78
	BH9/0.2-0.3	SE173824.003	%	60 - 130%	74
Dibromofluoromethane (Surrogate)	BH7/0.2-0.3	SE173824.001	%	60 - 130%	81
	BH8/0.2-0.3	SE173824.002	%	60 - 130%	79
	BH9/0.2-0.3	SE173824.003	%	60 - 130%	85
platile Petroleum Hydrocarbons in Soll				Method: M	e-(au)-[env]ai
Parameter	Sample Name	Sample Number	Units	Criteria	Recovery
Bromofluorobenzene (Surrogate)	BH7/0.2-0.3	SE173824.001	%	60 - 130%	77
	BH8/0.2-0.3	SE173824.002	%	60 - 130%	77
	BH9/0.2-0.3	SE173824.003	%	60 - 130%	75
d4-1,2-dichloroethane (Surrogate)	BH7/0.2-0.3	SE173824.001	%	60 - 130%	91
	BH8/0.2-0.3	SE173824.002	%	60 - 130%	76
	BH9/0.2-0.3	SE173824.003	%	60 - 130%	94
d8-toluene (Surrogate)	BH7/0.2-0.3	SE173824.001	%	60 - 130%	80
	BH8/0.2-0.3	SE173824.002	%	60 - 130%	78
	BH9/0.2-0.3	SE173824.003	%	60 - 130%	74
Dibromofluoromethane (Surrogate)	BH7/0.2-0.3	SE173824.001	%	60 - 130%	81
	BH8/0.2-0.3	SE173824.002	%	60 - 130%	79
	BH9/0.2-0.3	SE173824.003	%	60 - 130%	85

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil			Me	thod: ME-(AU)-[ENV]AN312
Sample Number	Parameter	Units	LOR	Result
LB138910.001	Mercury	mg/kg	0.05	<0.05

OC Pesticides in Soil

OC Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB138748.001		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1
		Alpha BHC	mg/kg	0.1	<0.1
		Lindane	mg/kg	0.1	<0.1
		Heptachlor	mg/kg	0.1	<0.1
		Aldrin	mg/kg	0.1	<0.1
		Beta BHC	mg/kg	0.1	<0.1
		Delta BHC	mg/kg	0.1	<0.1
		Heptachlor epoxide	mg/kg	0.1	<0.1
		Alpha Endosulfan	mg/kg	0.2	<0.2
		Gamma Chlordane	mg/kg	0.1	<0.1
		Alpha Chlordane	mg/kg	0.1	<0.1
		p,p'-DDE	mg/kg	0.1	<0.1
		Dieldrin	mg/kg	0.2	<0.2
		Endrin	mg/kg	0.2	<0.2
		Beta Endosulfan	mg/kg	0.2	<0.2
		p,p'-DDD	mg/kg	0.1	<0.1
		p,p'-DDT	mg/kg	0.1	<0.1
		Endosulfan sulphate	mg/kg	0.1	<0.1
		Endrin Aldehyde	mg/kg	0.1	<0.1
		Methoxychlor	mg/kg	0.1	<0.1
		Endrin Ketone	mg/kg	0.1	<0.1
		Isodrin	mg/kg	0.1	<0.1
		Mirex	mg/kg	0.1	<0.1
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	%	-	94
OP Pesticides in Soil				Meth	od: ME-(AU)-[ENV]AN4
Sample Number		Parameter	Units	LOR	Result
LB138748.001		Dichlorvos	mg/kg	0.5	<0.5
		Dimethoate	mg/kg	0.5	<0.5
		Diazinon (Dimpylate)	mg/kg	0.5	<0.5
		Fenitrothion	mg/kg	0.2	<0.2
		Malathion	mg/kg	0.2	<0.2
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2
		Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2
		Bromophos Ethyl	mg/kg	0.2	<0.2

PAH (Polynuclear Aromatic Hydrocarbons) in Soil			Me	thod: ME-(AU)-[ENV]AN420
	d14-p-terphenyl (Surrogate)	%	-	82
Surrogates	2-fluorobiphenyl (Surrogate)	%	-	76
	Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2
	Ethion	mg/kg	0.2	<0.2
	Methidathion	mg/kg	0.5	<0.5

Sample Number	Parameter	Units	LOR	Result
LB138748.001	Naphthalene	mg/kg	0.1	<0.1
	2-methylnaphthalene	mg/kg	0.1	<0.1
	1-methylnaphthalene	mg/kg	0.1	<0.1
	Acenaphthylene	mg/kg	0.1	<0.1
	Acenaphthene	mg/kg	0.1	<0.1
	Fluorene	mg/kg	0.1	<0.1
	Phenanthrene	mg/kg	0.1	<0.1
	Anthracene	mg/kg	0.1	<0.1
	Fluoranthene	mg/kg	0.1	<0.1
	Pyrene	mg/kg	0.1	<0.1
	Benzo(a)anthracene	mg/kg	0.1	<0.1
	Chrysene	mg/kg	0.1	<0.1
	Benzo(a)pyrene	mg/kg	0.1	<0.1

METHOD BLANKS

Blank results are evaluated against the limit of reporting (LOR), for the chosen method and its associated instrumentation, typically 2.5 times the statistically determined method detection limit (MDL).

Result is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

PAH (Polynuclear Aromatic Hydrocarbons) in Soil (continued) Method: ME-(AU)-[ENV]AN420 LOR Sample Number Units Result LB138748.001 Indeno(1,2,3-cd)pyrene mg/kg 0.1 < 0.1 Dibenzo(ah)anthracene mg/kg 0.1 <0.1 0.1 <0.1 Benzo(ghi)perylene mg/kg Total PAH (18) mg/kg 0.8 <0.8 Surrogates d5-nitrobenzene (Surrogate) 76 % 2-fluorobiphenyl (Surrogate) % 76 82 d14-p-terphenyl (Surrogate) % -PCBs in Soil Method: ME-(AU)-[ENV]AN420 Sample Numb Result Parameter LOR LB138748.001 Arochlor 1016 0.2 <0.2 mg/kg Arochlor 1221 mg/kg 0.2 < 0.2 Arochlor 1232 mg/kg 0.2 <0.2 Arochlor 1242 0.2 <0.2 mg/kg Arochlor 1248 mg/kg 0.2 < 0.2 Arochlor 1254 mg/kg 0.2 <0.2 Arochlor 1260 0.2 <0.2 mg/kg Arochlor 1262 mg/kg 0.2 < 0.2 Arochlor 1268 0.2 <0.2 mg/kg Total PCBs (Arochlors) mg/kg <1 1 Surrogates Tetrachloro-m-xylene (TCMX) (Surrogate) % 94 Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES Method: ME-(AU)-[ENV]AN040/AN320 LOR Sample Number Result LB138917.001 Arsenic, As mg/kg 3 <3 Cadmium Cd mg/kg 0.3 <0.3 Chromium, Cr 0.3 <0.3 mg/kg <0.5 Copper, Cu mg/kg 0.5 Lead, Pb mg/kg 1 <1 Nickel, Ni <0.5 0.5 mg/kg 0.5 <0.5 Zinc, Zn mg/kg TRH (Total Recoverable Hydrocarbons) in Soil Method: ME-(AU)-[ENV]AN403 Units Result Sample Number Parameter LOR LB138748.001 TRH C10-C14 20 <20 mg/kg TRH C15-C28 mg/kg 45 <45 TRH C29-C36 45 <45 mg/kg TRH C37-C40 100 <100 mg/kg TRH C10-C36 Total mg/kg 110 <110 VOC's in Soil Method: ME-(AU)-[ENVIAN433 Sample Numb Units Result Parameter LOR LB138871.001 Monocyclic Aromatic Benzene mg/kg 0.1 <0.1 Hvdrocarbons Toluene mg/kg 0.1 <0.1 Ethylbenzene 0.1 <0.1 mg/kg 0.2 <0.2 m/p-xylene mg/kg o-xylene mg/kg 0.1 < 0.1 Polycyclic VOCs Naphthalene 0.1 <0.1 mg/kg Dibromofluoromethane (Surrogate) Surrogates 71 % d4-1,2-dichloroethane (Surrogate) % 81 d8-toluene (Surrogate) % 72 Bromofluorobenzene (Surrogate) % 70 Totals Total BTEX mg/kg 0.6 <0.6 Volatile Petroleum Hydrocarbons in Soil Method: ME-(AU)-[ENV]AN433 Sample Number Parameter Units LOR Result LB138871.001 TRH C6-C9 20 <20 mg/kg Surrogates Dibromofluoromethane (Surrogate) % 71 d4-1,2-dichloroethane (Surrogate) % 81 d8-toluene (Surrogate) % 72

Duplicates are calculated as Relative Percentage Difference (RPD) using the formula: RPD = | OriginalResult - ReplicateResult | x 100 / Mean

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Meth	od: ME-(AU)-	[ENV]AN312
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE173778.001	LB138910.024	Mercury	mg/kg	0.05	<0.05	<0.05	200	0
SE173806.041	LB138910.014	Mercury	mg/kg	0.05	0.19	0.27	51	35

Moisture Content

Moisture Content Method: ME-(AU)-						ENVJAN002		
Original	Duplicate	Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE173782.006	LB138848.011	% Moisture	%w/w	0.5	7.8	7.7	43	2
SE173782.016	LB138848.022	% Moisture	%w/w	0.5	13	12	38	6
SE173782.028	LB138848.033	% Moisture	%w/w	0.5	12	12	39	0

OC Pesticides in Soil

riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	DDD.
SE173806.035	LB138748.014		Hexachlorobenzene (HCB) Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
				mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg				200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1		
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg		<0.1	<0.1		
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	0
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.14	30	5
SE173824.002	LB138748.033		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Lindane	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor	mg/kg	0.1	<0.1	<0.1	200	0
			Aldrin	mg/kg	0.1	<0.1	<0.1	200	0
			Beta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Delta BHC	mg/kg	0.1	<0.1	<0.1	200	0
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	200	0
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	200	0
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	200	0
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	200	0
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	200	0
			Dieldrin	mg/kg	0.2	<0.2	<0.2	200	0
			Endrin	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDD	mg/kg	0.2	<0.2	<0.2	200	0
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	200	0
			Beta Endosulfan		0.1	<0.1	<0.1	200	0
			p,p'-DDD	mg/kg	0.2	<0.2	<0.2	200	0

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Driginal	Duplicate		Parameter	Units	LOR	Original		od: ME-(AU)- Criteria %	RPI
E173824.002	LB138748.033				0.1	<0.1	<0.1	200	(
E173024.002	LD130740.033		p,p'-DDT	mg/kg					
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	200	(
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	200	0
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	200	0
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	200	0
			Isodrin	mg/kg	0.1	<0.1	<0.1	200	0
			Mirex	mg/kg	0.1	<0.1	<0.1	200	0
			Total CLP OC Pesticides	mg/kg	1	<1	<1	200	(
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	30	9
P Pesticides in S	oil						Meth	od: ME-(AU)-	-IENVI
			Devenuetor	l Inite		Original		Criteria %	
Driginal	Duplicate		Parameter	Units	LOR	Original			
SE173806.035	LB138748.014		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	
			Malathion	mg/kg	0.2	<0.2	<0.2	200	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	
			Ethion	mg/kg	0.2	<0.2	<0.2	200	
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	
E173824.002	LB138748.033		Dichlorvos	mg/kg	0.5	<0.5	<0.5	200	
			Dimethoate	mg/kg	0.5	<0.5	<0.5	200	
			Diazinon (Dimpylate)	mg/kg	0.5	<0.5	<0.5	200	
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	200	
			Malathion	mg/kg	0.2	<0.2	<0.2	200	
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	<0.2	<0.2	200	
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	200	
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	200	
			Methidathion	mg/kg	0.5	<0.5	<0.5	200	
			Ethion		0.2	<0.2	<0.2	200	
				mg/kg					
			Azinphos-methyl (Guthion)	mg/kg	0.2	<0.2	<0.2	200	
			Total OP Pesticides*	mg/kg	1.7	<1.7	<1.7	200	
		Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4	30	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.4	30	
H (Polynuclear)	Aromatic Hydrocarbo	ons) in Soil					Meth	od: ME-(AU)-	-IENV
riginal	Duplicate	,	Parameter	Units	LOR	Original		Criteria %	RF
3	LB138748.014				0.1	<0.1	<0.1	200	TXI
	LD 130/40.014		Naphthalene	mg/kg					
=173606.035			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	
=173606.035				malka	0.1	<0.1	<0.1	200	
-173606.035			1-methylnaphthalene	mg/kg			-0.1	200	
-173606.035			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	
E173606.035					0.1 0.1	<0.1 <0.1	<0.1	200	
= 173000.035			Acenaphthylene	mg/kg					
= 173000.035			Acenaphthylene	mg/kg mg/kg	0.1	<0.1	<0.1	200	
- 173000.035			Acenaphthylene Acenaphthene Fluorene	mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	200 200	
- 173000.035			Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1	200 200 200 200	
173000.035			Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200	
- 173006.035			Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200	
- 173000.035			Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200	
E 173006.033			Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200	
E 173006.033			Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200	
E173806.035			Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200 200	
- 173000.035			Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b&j)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200 200 200	
E 173006.033			Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(bå))fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200 200 200	
E 173006.033			Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(bä))fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200 200 200	
E 173006.033			Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(bå))fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	200 200 200 200 200 200 200 200 200 200	

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Driginal	Duplicate		Parameter	Units	LOR	Original	Dup <u>licate</u>	Criteria %	RPD
E173806.035	LB138748.014		Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td>0</td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	0
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td>0</td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	0
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	0
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	C
		Ū	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	C
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	30	2
E173824.002	LB138748.033		Naphthalene	mg/kg	0.1	<0.1	<0.1	200	(
			2-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	(
			1-methylnaphthalene	mg/kg	0.1	<0.1	<0.1	200	(
			Acenaphthylene	mg/kg	0.1	<0.1	<0.1	200	(
			Acenaphthene	mg/kg	0.1	<0.1	<0.1	200	
			Fluorene	mg/kg	0.1	<0.1	<0.1	200	
			Phenanthrene		0.1	<0.1	<0.1	200	
				mg/kg					
			Anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Chrysene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(a)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	200	
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	200	
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	200	
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>200</td><td></td></lor=0<>	TEQ (mg/kg)	0.2	<0.2	<0.2	200	
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td><0.3</td><td><0.3</td><td>134</td><td></td></lor=lor<>	TEQ (mg/kg)	0.3	<0.3	<0.3	134	
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td><0.2</td><td><0.2</td><td>175</td><td></td></lor=lor>	TEQ (mg/kg)	0.2	<0.2	<0.2	175	
			Total PAH (18)	mg/kg	0.8	<0.8	<0.8	200	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	30	
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.5	0.4	30	
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.5	0.4	30	
Bs in Soil							Meth	od: ME-(AU)-	-IENVI
riginal	Duplicate		Parameter	Units	LOR	Original	Duplicate		RP
E173806.035	LB138748.014		Arochlor 1016				<0.2		
E173606.035	LD130740.014			mg/kg	0.2	<0.2		200	
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	200	
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	200	
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	30	
E173824.002	LB138748.033		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	200	
			Arochlor 1260	mg/kg	0.2	<0.2	<0.2	200	
					0.2	<0.2	<0.2	200	
			Arochlor 1262	mg/kg	0.2				
			Arochlor 1262 Arochlor 1268	mg/kg mg/kg	0.2	<0.2	<0.2	200	
				mg/kg	0.2	<0.2		200	
		Surrogates	Arochlor 1268				<0.2		

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD 9
Ŭ	•								
SE173806.040	LB138917.014		Arsenic, As	mg/kg	3	4	9	46	80 ②
			Cadmium, Cd	mg/kg	0.3	<0.3	<0.3	200	0
			Chromium, Cr	mg/kg	0.3	14	17	33	22
			Copper, Cu	mg/kg	0.5	8.8	21	33	82 @
			Lead, Pb	mg/kg	1	10	62	33	143 (
			Nickel, Ni	mg/kg	0.5	4.2	6.0	40	34
			Zinc, Zn	mg/kg	0.5	12	48	37	118 (
SE173824.003	LB138917.024		Arsenic, As	mg/kg	3	10	13	39	24
			Cadmium, Cd	mg/kg	0.3	0.4	0.3	116	5
			Chromium, Cr	mg/kg	0.3	47	51	31	8
			Copper, Cu	mg/kg	0.5	31	24	32	25
			Lead, Pb	mg/kg	1	50	43	32	14
			Nickel, Ni	mg/kg	0.5	10	12	34	15
			Zinc, Zn	mg/kg	0.5	100	85	32	19
DH (Total Decou	orable Undragorhana	Vin Coll					Moth		
	erable Hydrocarbons) in Soli						od: ME-(AU)-	
Original	Duplicate		Parameter	Units	LOR	Original	-	Criteria %	RPD
E173806.035	LB138748.014		TRH C10-C14	mg/kg	20	<20	<20	200	0
			TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110	200	0
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
SE173824.002	LB138748.033		TRH C10-C14	mg/kg	20	<20	<20	200	0
524.002	ED 1001 40.000		TRH C15-C28	mg/kg	45	<45	<45	200	0
			TRH C29-C36	mg/kg	45	<45	<45	200	0
			TRH C37-C40	mg/kg	100	<100	<100	200	0
								200	0
			TRH C10-C36 Total	mg/kg	110	<110	<110		
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	200	0
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	<25	<25	200	0
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	<25	<25	200	0
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	200	0
			TRH >C34-C40 (F4)	mg/kg	120	<120	<120	200	0
OC's in Soil							Meth	od: ME-(AU)-	[ENV]A
Original	Duplicate		Parameter	Units	LOR	Original	Dunlicate	Criteria %	RPD
SE173840.003	LB138871.014	Monocyclic	Benzene		0.1	0 Originar	0	200	0
BE173040.003	LB130071.014	Aromatic		mg/kg		0	0	200	0
		Aromatic	Toluene	mg/kg	0.1				
			Ethylbenzene	mg/kg	0.1	0	0	200	0
			m/p-xylene	mg/kg	0.2	0.02	0.01	200	0
			o-xylene	mg/kg	0.1	0.01	0.01	200	0
		Polycyclic	Naphthalene	mg/kg	0.1	0	0.01	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.51	3.97	50	12
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.93	3.94	50	22
			d8-toluene (Surrogate)	mg/kg	-	5.32	4.72	50	12
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.08	3.9	50	5
				mg/kg	0.3				0
		Totals	Total Xylenes	iiig/kg	0.0	0.03	0.02	200	0
		Totals	Total Xylenes Total BTEX	mg/kg	0.6	0.03	0.02	200 200	
E173881.003	LB138871.021	Totals	· · ·						0
E173881.003	LB138871.021		Total BTEX	mg/kg mg/kg	0.6	0.03	0.02	200	0
E173881.003	LB138871.021	Monocyclic	Total BTEX Benzene Toluene	mg/kg mg/kg mg/kg	0.6 0.1 0.1	0.03 <0.1 <0.1	0.02 <0.1 <0.1	200 200 200	0 0 0
5E173881.003	LB138871.021	Monocyclic	Total BTEX Benzene Toluene Ethylbenzene	mg/kg mg/kg mg/kg mg/kg	0.6 0.1 0.1 0.1	0.03 <0.1 <0.1 <0.1	0.02 <0.1 <0.1 <0.1	200 200 200 200	0 0 0 0
SE173881.003	LB138871.021	Monocyclic	Total BTEX Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.6 0.1 0.1 0.1 0.2	0.03 <0.1 <0.1 <0.1 <0.2	0.02 <0.1 <0.1 <0.1 <0.2	200 200 200 200 200	0 0 0 0
E173881.003	LB138871.021	Monocyclic Aromatic	Total BTEX Benzene Toluene Ethylbenzene m/p-xylene o-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.6 0.1 0.1 0.1 0.2 0.1	0.03 <0.1 <0.1 <0.1 <0.2 <0.1	0.02 <0.1 <0.1 <0.1 <0.2 <0.1	200 200 200 200 200 200 200	0 0 0 0 0
E173881.003	LB138871.021	Monocyclic	Total BTEX Benzene Toluene Ethylbenzene m/p-xylene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.6 0.1 0.1 0.1 0.2	0.03 <0.1 <0.1 <0.1 <0.2	0.02 <0.1 <0.1 <0.1 <0.2	200 200 200 200 200	0 0 0 0 0 0 0 0 0 5

mg/kg

mg/kg

mg/kg

4.2

3.7

3.6

3.7

3.5

3.7

d4-1,2-dichloroethane (Surrogate)

Bromofluorobenzene (Surrogate)

d8-toluene (Surrogate)

14

3

3

50

50

50

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifier when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

/OC's in Soil (con	tinuea)						Men	od: ME-(AU)-[LIAN PURHO
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE173881.003	LB138871.021	Totals	Total Xylenes	mg/kg	0.3	<0.3	<0.3	200	0
			Total BTEX	mg/kg	0.6	<0.6	<0.6	200	0
/olatile Petroleum	Hydrocarbons in Soi	I					Meth	od: ME-(AU)-[ENVJAN43
Original	Duplicate		Parameter	Units	LOR	Original	Duplicate	Criteria %	RPD %
SE173840.003	LB138871.014		TRH C6-C10	mg/kg	25	1.31	7.07	200	0
			TRH C6-C9	mg/kg	20	0.17	7.65	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.51	3.97	30	12
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.93	3.94	30	22
			d8-toluene (Surrogate)	mg/kg	-	5.32	4.72	30	12
			Bromofluorobenzene (Surrogate)	mg/kg	-	4.08	3.9	30	5
		VPH F Bands	Benzene (F0)	mg/kg	0.1	0	0	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	1.28	7.05	200	0
SE173881.003	LB138871.021		TRH C6-C10	mg/kg	25	<25	<25	200	0
			TRH C6-C9	mg/kg	20	<20	<20	200	0
		Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	3.7	3.9	30	5
			d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.2	3.7	30	14
			d8-toluene (Surrogate)	mg/kg	-	3.7	3.5	30	3
			Bromofluorobenzene (Surrogate)	mg/kg	-	3.6	3.7	30	3
		VPH F Bands	Benzene (F0)	mg/kg	0.1	<0.1	<0.1	200	0
			TRH C6-C10 minus BTEX (F1)	mg/kg	25	<25	<25	200	0

Method: ME-(AU)-[ENV]AN420

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Mercury in Soil				1	Method: ME-(A	U)-[ENV]AN312
Sample Number Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB138910.002 Mercury	mg/kg	0.05	0.20	0.2	70 - 130	99

OC Pesticides in Soil

C Pesticides III 30								
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
_B138748.002		Heptachlor	mg/kg	0.1	0.2	0.2	60 - 140	99
		Aldrin	mg/kg	0.1	0.2	0.2	60 - 140	104
		Delta BHC	mg/kg	0.1	0.2	0.2	60 - 140	94
		Dieldrin	mg/kg	0.2	<0.2	0.2	60 - 140	94
		Endrin	mg/kg	0.2	0.2	0.2	60 - 140	112
		p,p'-DDT	mg/kg	0.1	0.2	0.2	60 - 140	121
	Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.14	0.15	40 - 130	90
P Pesticides in Soi	oll -					N	dethod: ME-(A	U)-[ENV]AN
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery
B138748.002		Dichlorvos	mg/kg	0.5	2.1	2	60 - 140	103
		Diazinon (Dimpylate)	mg/kg	0.5	1.8	2	60 - 140	88
		Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.8	2	60 - 140	92
		Ethion	mg/kg	0.2	1.6	2	60 - 140	79
								80
	Surrogates	2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.5	40 - 130	00
	Surrogates	2-fluorobiphenyl (Surrogate) d14-p-terphenyl (Surrogate)	mg/kg mg/kg	-	0.4	0.5 0.5	40 - 130 40 - 130	86
AH (Polynuclear Ar		d14-p-terphenyl (Surrogate)				0.5		86
		d14-p-terphenyl (Surrogate)				0.5	40 - 130	86
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soil	mg/kg	-	0.4	0.5	40 - 130 /lethod: ME-(A l	86 U)-[ENV]AN
Sample Number		d14-p-terphenyi (Surrogate) urbons) in Soil Parameter	mg/kg Units	LOR	0.4 Result	0.5 N Expected	40 - 130 dethod: ME-(A Criteria %	86 U)-[ENV]AN Recovery
Sample Number		d14-p-terphenyi (Surrogate) arbons) in Soil Parameter Naphthalene	mg/kg Units mg/kg	- LOR 0.1	0.4 Result 3.4	0.5 N Expected 4	40 - 130 Method: ME-(Al Criteria % 60 - 140	86 U)-[ENV]AN Recovery 86
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene	mg/kg Units mg/kg mg/kg	LOR 0.1 0.1	0.4 Result 3.4 3.3	0.5 Expected 4 4	40 - 130 Nethod: ME-(A) Criteria % 60 - 140 60 - 140	86 U)-[ENV]AN Recovery 86 83
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene	mg/kg Units mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1	0.4 Result 3.4 3.3 3.4	0.5 Expected 4 4 4	40 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140	86 U)-[ENV]AN Recovery 86 83 84
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soil Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1	0.4 Result 3.4 3.3 3.4 3.4 3.4	0.5 Expected 4 4 4 4 4	40 - 130 Method: ME-(A Criteria % 60 - 140 60 - 140 60 - 140 60 - 140	86 U)-[ENV]AN Recovery 86 83 84 84 85
Sample Number		d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1	0.4 Result 3.4 3.3 3.4 3.4 3.4 3.4	0.5 Expected 4 4 4 4 4 4 4 4	40 - 130 Method: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	86 U)-[ENV]AN Recovery 86 83 84 85 85
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soll Parameter Naphthalene Acenaphthylene Acenaphthylene Phenanthrene Phenanthrene Fluoranthene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 Result 3.4 3.3 3.4 3.4 3.4 3.4 3.4 3.4	0.5 Expected 4 4 4 4 4 4 4 4 4	40 - 130 Aethod: ME-(A) Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	86 U)-[ENV]AN Recovery 86 83 84 85 85 84
Sample Number		d14-p-terphenyl (Surrogate) arbons) in Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 Result 3.4 3.3 3.4 3.4 3.4 3.4 3.4 3.4	0.5 Expected 4 4 4 4 4 4 4 4 4	40 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140 60 - 140	86 U)-[ENV]AN Recovery 86 83 83 84 85 85 84 83
Sample Number	romatic Hydroca	d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 Result 3.4 3.3 3.4 3.4 3.4 3.4 3.4 3.4	0.5 Expected 4 4 4 4 4 4 4 4 4 4 4	40 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140	86 U)-[ENV]AN Recovery 86 83 84 85 85 84 83 83 87
Sample Number	romatic Hydroca	d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 Result 3.4 3.3 3.4 3.4 3.4 3.4 3.4 3.4	0.5 Expected 4 4 4 4 4 4 4 4 4 4 0.5	40 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 40 - 130	86 U)-[ENV]AN Recovery 86 83 84 85 85 84 85 85 84 83 87 76
AH (Polynuclear Ar Sample Number B138748.002	romatic Hydroca	d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 Result 3.4 3.3 3.4 3.4 3.4 3.4 3.4 3.4	0.5 Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	40 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 40 - 130 40 - 130	86 U)-[ENV]AN Recovery 86 83 84 85 85 85 84 83 87 76 80 86
Sample Number .B138748.002	romatic Hydroca	d14-p-terphenyl (Surrogate) arbons) In Soll Parameter Naphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)pyrene d5-nitrobenzene (Surrogate) 2-fluorobiphenyl (Surrogate)	mg/kg Units mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	LOR 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.4 Result 3.4 3.3 3.4 3.4 3.4 3.4 3.4 3.4	0.5 Expected 4 4 4 4 4 4 4 4 4 0.5 0.5 0.5 0.5	40 - 130 Method: ME-(Al Criteria % 60 - 140 60 - 140 40 - 130 40 - 130 40 - 130	86 Recovery 86 83 84 85 85 84 83 87 76 80 86

Total Recoverable Elements in Soil/Waste Solids/Materials by ICPOES

Total Recoverable	Elements in Soil/V	Vaste Solids/Materials by ICPOES				Method:	ME-(AU)-[EN\	/JAN040/AN320
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB138917.002		Arsenic, As	mg/kg	3	50	50	80 - 120	100
		Cadmium, Cd	mg/kg	0.3	50	50	80 - 120	100
		Chromium, Cr	mg/kg	0.3	49	50	80 - 120	97
		Copper, Cu	 mg/kg	0.5	50	50	80 - 120	100
		Lead, Pb	 mg/kg	1	50	50	80 - 120	99
		Nickel, Ni	mg/kg	0.5	50	50	80 - 120	99
		Zinc, Zn	mg/kg	0.5	50	50	80 - 120	99
TRH (Total Recove	rable Hydrocarbo	ns) in Soil				N	/lethod: ME-(A	U)-[ENV]AN403
Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB138748.002		TRH C10-C14	mg/kg	20	35	40	60 - 140	88
		TRH C15-C28	mg/kg	45	<45	40	60 - 140	85
		TRH C29-C36	mg/kg	45	<45	40	60 - 140	75
	TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	35	40	60 - 140	88
		TRH >C16-C34 (F3)	 mg/kg	90	<90	40	60 - 140	80
		TRH >C34-C40 (F4)	mg/kg	120	<120	20	60 - 140	80
VOC's in Soil						N	/lethod: ME-(A	U)-[ENV]AN433

Sample Number Parameter

Laboratory Control Standard (LCS) results are evaluated against an expected result, typically the concentration of analyte spiked into the control during the sample preparation stage, producing a percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA /QC plan (Ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended dagger symbol (†) when outside suggested criteria.

Sample Number		Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB138871.002	Monocyclic	Benzene	mg/kg	0.1	2.1	2.9	60 - 140	71
	Aromatic	Toluene	mg/kg	0.1	2.3	2.9	60 - 140	79
		Ethylbenzene	mg/kg	0.1	1.9	2.9	60 - 140	66
		m/p-xylene	mg/kg	0.2	4.0	5.8	60 - 140	69
		o-xylene	mg/kg	0.1	1.9	2.9	60 - 140	65
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	81
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.3	5	60 - 140	86
		d8-toluene (Surrogate)	mg/kg	-	4.6	5	60 - 140	93
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	5	60 - 140	96
olatile Petroleum	Hydrocarbons in S	Soil				N	vethod: ME-(A	U)-[ENV]AN4:
Sample Number	r	Parameter	Units	LOR	Result	Expected	Criteria %	Recovery %
LB138871.002		TRH C6-C10	mg/kg	25	<25	24.65	60 - 140	87
		TRH C6-C9	mg/kg	20	21	23.2	60 - 140	91
	Surrogates	Dibromofluoromethane (Surrogate)	mg/kg	-	4.1	5	60 - 140	81
		d4-1,2-dichloroethane (Surrogate)	mg/kg	-	4.3	5	60 - 140	86
		d8-toluene (Surrogate)	mg/kg	-	4.6	5	60 - 140	93
		do-toldene (Sunogate)						
		Bromofluorobenzene (Surrogate)	mg/kg	-	4.8	5	60 - 140	96

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

Mercury in Soil						Met	nod: ME-(AL	J)-[ENV]AN312
QC Sample	Sample Number	Parameter	Units	LOR	Result	Original	Spike	Recovery%
SE173806.030	LB138910.004	Mercury	mg/kg	0.05	0.27	0.13	0.2	71

OC Pesticides in Soil

OC Semple			Parameter	Units	LOR	Result			J)-[ENV]AN42
QC Sample	Sample Number						Original	Spike	Recovery
SE173806.027	LB138748.032		Hexachlorobenzene (HCB)	mg/kg	0.1	<0.1	<0.1	-	
			Alpha BHC	mg/kg	0.1	<0.1	<0.1		
			Lindane	mg/kg	0.1	<0.1	<0.1	-	-
			Heptachlor	mg/kg	0.1	0.2	<0.1	0.2	96
			Aldrin	mg/kg	0.1	0.2	<0.1	0.2	101
			Beta BHC	mg/kg	0.1	<0.1	<0.1	-	-
			Delta BHC	mg/kg	0.1	0.2	<0.1	0.2	90
			Heptachlor epoxide	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			Gamma Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			Alpha Chlordane	mg/kg	0.1	<0.1	<0.1	-	-
			trans-Nonachlor	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDE	mg/kg	0.1	<0.1	<0.1	-	-
			Dieldrin	mg/kg	0.2	<0.2	<0.2	0.2	92
			Endrin	mg/kg	0.2	0.2	<0.2	0.2	101
			o,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			o,p'-DDT	mg/kg	0.1	<0.1	<0.1	-	-
			Beta Endosulfan	mg/kg	0.2	<0.2	<0.2	-	-
			p,p'-DDD	mg/kg	0.1	<0.1	<0.1	-	-
			p,p'-DDT	mg/kg	0.1	0.2	<0.1	0.2	113
			Endosulfan sulphate	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	-	-
			Methoxychlor	mg/kg	0.1	<0.1	<0.1	-	-
			Endrin Ketone	mg/kg	0.1	<0.1	<0.1	-	-
			Isodrin	mg/kg	0.1	<0.1	<0.1	-	-
			Mirex	mg/kg	0.1	<0.1	<0.1	-	-
	-		Total CLP OC Pesticides	mg/kg	1	1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0.15	0.15	-	99
P Pesticides in	Soil						Mett	nod: ME-(AL	J)-[ENV]AN42
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recovery
SE173806.027	LB138748.032		Dichlorvos	mg/kg	0.5	1.9	<0.5	2	96
			Dimethoate	mg/kg	0.5	<0.5	<0.5	-	-
			Diazinon (Dimpylate)	mg/kg	0.5	1.7	<0.5	2	84
			Fenitrothion	mg/kg	0.2	<0.2	<0.2	-	-
			Malathion	mg/kg	0.2	<0.2	<0.2	-	-
			Chlorpyrifos (Chlorpyrifos Ethyl)	mg/kg	0.2	1.7	<0.2	2	85
			Parathion-ethyl (Parathion)	mg/kg	0.2	<0.2	<0.2	-	-
			Bromophos Ethyl	mg/kg	0.2	<0.2	<0.2	-	-
			Methidathion	mg/kg	0.2	<0.2	<0.2	-	
			Moundulion	iiig/kg	0.0	-0.0	~0.0	-	-

Surrogates

PAH (Polynuclear Aromatic Hydrocarbons) in Soil

LB138748.032

QC Sample Sample Number

SE173806.027

Ethion

Azinphos-methyl (Guthion)

2-fluorobiphenyl (Surrogate)

d14-p-terphenyl (Surrogate)

Total OP Pesticides*

Parameter

Naphthalene

2-methylnaphthalene

1-methylnaphthalene

Acenaphthylene

Acenaphthene

Phenanthrene

Fluorene

80

-

82

82

85

82

85

0.2

0.2

1.7

LOR

0.1

0.1

0.1

0.1

0.1

0.1

0.1

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

Units

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

mg/kg

1.6

<0.2

6.9

0.4

0.4

3.4

<0.1

<0.1

3.3

3.4

<0.1

3.3

<0.2

<0.2

<1.7

0.4

0.4

<0.1

<0.1

<0.1

<0.1

< 0.1

<0.1

<0.1

Result Original

2

-

-

4

4

4

Method: ME-(AU)-[ENV]AN420

Spike Recovery%

MATRIX SPIKES

Matrix Spike (MS) results are evaluated as the percentage recovery of an expected result, typically the concentration of analyte spiked into a field sub-sample during the sample preparation stage. The original sample's result is subtracted from the sub-sample result before determining the percentage recovery. The criteria applied to the percentage recovery is established in the SGS QA/QC plan (ref: MP-(AU)-[ENV]QU-022). For more information refer to the footnotes in the concluding page of this report.

Recovery is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

	r Aromatic Hydrocarb					_			J)-[ENV]AN4
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recover
SE173806.027	LB138748.032		Anthracene	mg/kg	0.1	3.3	<0.1	4	84
			Fluoranthene	mg/kg	0.1	3.3	<0.1	4	82
			Pyrene	mg/kg	0.1	3.1	<0.1	4	76
			Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Chrysene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(b&j)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(k)fluoranthene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(a)pyrene	mg/kg	0.1	3.5	<0.1	4	86
			Indeno(1,2,3-cd)pyrene	mg/kg	0.1	<0.1	<0.1	-	-
			Dibenzo(ah)anthracene	mg/kg	0.1	<0.1	<0.1	-	-
			Benzo(ghi)perylene	mg/kg	0.1	<0.1	<0.1	-	-
			Carcinogenic PAHs, BaP TEQ <lor=0< td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.5</td><td><0.2</td><td>-</td><td>-</td></lor=0<>	TEQ (mg/kg)	0.2	3.5	<0.2	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor< td=""><td>TEQ (mg/kg)</td><td>0.3</td><td>3.6</td><td><0.3</td><td>-</td><td>-</td></lor=lor<>	TEQ (mg/kg)	0.3	3.6	<0.3	-	-
			Carcinogenic PAHs, BaP TEQ <lor=lor 2<="" td=""><td>TEQ (mg/kg)</td><td>0.2</td><td>3.5</td><td><0.2</td><td>-</td><td>-</td></lor=lor>	TEQ (mg/kg)	0.2	3.5	<0.2	-	-
			Total PAH (18)	mg/kg	0.8	27	<0.8	-	
		Surrogates	d5-nitrobenzene (Surrogate)	mg/kg	-	0.4	0.4	-	76
			2-fluorobiphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	82
			d14-p-terphenyl (Surrogate)	mg/kg	-	0.4	0.4	-	82
CBs in Soll							Meth	nod: ME-(AU	J)-[ENV]AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
SE173806.027	LB138748.032		Arochlor 1016	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1221	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1232	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1242	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1248	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1254	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1260	mg/kg	0.2	0.4	<0.2	0.4	104
			Arochlor 1262	mg/kg	0.2	<0.2	<0.2	-	-
			Arochlor 1268	mg/kg	0.2	<0.2	<0.2	-	-
			Total PCBs (Arochlors)	mg/kg	1	<1	<1	-	-
		Surrogates	Tetrachloro-m-xylene (TCMX) (Surrogate)	mg/kg	-	0	0	-	109
otal Recoverabl	le Elements in Soil/Wa	ste Solids/Mater	als by ICPOES				Method: ME	-(AU)-[ENV	JAN040/AN
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E173806.029	LB138917.004		Arsenic, As	mg/kg	3	54	6	50	96
2110000.020	201000111001		Cadmium, Cd	mg/kg	0.3	50	<0.3	50	100
			Chromium, Cr	mg/kg	0.3	57	8.6	50	97
			Copper, Cu	mg/kg	0.5	60	11	50	98
			Lead, Pb	mg/kg	1	59	12	50	95
			Nickel, Ni	mg/kg	0.5	50	0.7	50	98
			Zinc, Zn	mg/kg	0.5	55	5.4	50	99
PH (Total Paco	verable Hydrocarbons) in Soil						nod: ME-(AL	
	-	, in 60ii	D		108	D			
QC Sample	Sample Number		Parameter	Units	LOR	Result	Original	Spike	Recove
E173806.027	LB138748.032		TRH C10-C14	mg/kg	20	43	<20	40	108
			TRH C15-C28	mg/kg	45	<45	<45	40	100
			TRH C29-C36	mg/kg	45	<45	<45	40	93
			TRH C37-C40	mg/kg	100	<100	<100	-	-
			TRH C10-C36 Total	mg/kg	110	<110	<110	-	-
			TRH C10-C40 Total (F bands)	mg/kg	210	<210	<210	-	-
		TRH F Bands	TRH >C10-C16 (F2)	mg/kg	25	42	<25	40	105
			TRH >C10-C16 (F2) - Naphthalene	mg/kg	25	42	<25	-	-
			TRH >C16-C34 (F3)	mg/kg	90	<90	<90	40	98
			TRH >C34-C40 (F4)						

The original result is the analyte concentration of the matrix spike. The Duplicate result is the analyte concentration of the matrix spike duplicate.

The RPD is evaluated against the Maximum Allowable Difference (MAD) criteria and can be graphically represented by a curve calculated from the Statistical Detection Limit (SDL) and Limiting Repeatability (LR) using the formula: MAD = 100 x SDL / Mean + LR

Where the Maximum Allowable Difference evaluates to a number larger than 200 it is displayed as 200.

RPD is shown in Green when within suggested criteria or Red with an appended reason identifer when outside suggested criteria. Refer to the footnotes section at the end of this report for failure reasons.

No matrix spike duplicates were required for this job.

Samples analysed as received.

Solid samples expressed on a dry weight basis.

QC criteria are subject to internal review according to the SGS QA/QC plan and may be provided on request or alternatively can be found here: http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical Documents/MP-AU-ENV-QU-022 QA QC Plan.pdf

- * NATA accreditation does not cover the performance of this service.
- ** Indicative data, theoretical holding time exceeded.
- Sample not analysed for this analyte.
- IS Insufficient sample for analysis.
- LNR Sample listed, but not received.
- LOR Limit of reporting.
- QFH QC result is above the upper tolerance.
- QFL QC result is below the lower tolerance.
- ① At least 2 of 3 surrogates are within acceptance criteria.
- ② RPD failed acceptance criteria due to sample heterogeneity.
- ③ Results less than 5 times LOR preclude acceptance criteria for RPD.
- ④ Recovery failed acceptance criteria due to matrix interference.
- Recovery failed acceptance criteria due to the presence of significant concentration of analyte (i.e. the concentration of analyte exceeds the spike level).
- 6 LOR was raised due to sample matrix interference.
- ⁽⁷⁾ LOR was raised due to dilution of significantly high concentration of analyte in sample.
- Image: Image:
- Recovery failed acceptance criteria due to sample heterogeneity.
- [®] LOR was raised due to high conductivity of the sample (required dilution).
- t Refer to Analytical Report comments for further information.

This document is issued by the Company under its General Conditions of Service accessible at <u>www.sqs.com/en/Terms-and-Conditions.aspx</u>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

This test report shall not be reproduced, except in full.

SAMPLE RECEIPT ADVICE

	S	LABORATORY DETA	AILS
Contact	Gonzalo Parra	Manager	Huong Crawford
Client	LAND AND GROUNDWATER CONSULTING PTY LTD	Laboratory	SGS Alexandria Environmental
Address	131 B Riverview Road NSW 2204	Address	Unit 16, 33 Maddox St Alexandria NSW 2015
Telephone	61 2 95598424	Telephone	+61 2 8594 0400
Facsimile	(Not specified)	Facsimile	+61 2 8594 0499
Email	gparra@lgconsult.com.au	Email	au.environmental.sydney@sgs.com
Project	LG17100.01 Dillwynnia Grove, Heathcote	Samples Received	Fri 15/12/2017
Order Number	LGC141106060	Report Due	Thu 21/12/2017
Samples	3	SGS Reference	SE173824

SUBMISSION DETAILS

This is to confirm that 3 samples were received on Friday 15/12/2017. Results are expected to be ready by COB Thursday 21/12/2017. Please quote SGS reference SE173824 when making enquiries. Refer below for details relating to sample integrity upon receipt.

Samples clearly labelled	Yes	Complete documentation received
Sample container provider	SGS	Sample cooling method
Samples received in correct containers	Yes	Sample counts by matrix
Date documentation received	15/12/2017	Type of documentation received
Samples received in good order	Yes	Samples received without headspace
Sample temperature upon receipt	7.3°C	Sufficient sample for analysis
Turnaround time requested	Standard	

Unless otherwise instructed, water and bulk samples will be held for one month from date of report, and soil samples will be held for two months.

COMMENTS -

3 soil samples have been placed on hold.

This document is issued by the Company under its General Conditions of Service accessible at www.sqs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

SGS Australia Pty Ltd ABN 44 000 964 278

Environment, Health and Safety

Unit 16 33 Maddox St PO Box 6432 Bourke Rd BC Alexandria NSW 2015 Alexandria NSW 2015

Australia t +61 2 8594 0400 Australia f +61 2 8594 0499

Yes Ice Bricks 3 Soil COC Yes Yes

www.sgs.com.au

SAMPLE RECEIPT ADVICE

__ CLIENT DETAILS __

Client LAND AND GROUNDWATER CONSULTING PTY LTD

Project LG17100.01 Dillwynnia Grove, Heathcote

SUMMAR	Y OF ANALYSIS								
No.	Sample ID	OC Pesticides in Soll	OP Pesticides in Soil	PAH (Polynuclear Aromatic Hydrocarbons) in Soil	PCBs in Soil	Total Recoverable Elements in Soil/Waste	TRH (Total Recoverable Hydrocarbons) in Soil	VOC's in Soil	Volatile Petroleum Hydrocarbons in Soil
001	BH7/0.2-0.3	29	14	26	11	7	10	12	8
002	BH8/0.2-0.3	29	14	26	11	7	10	12	8
003	BH9/0.2-0.3	29	14	26	11	7	10	12	8

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction . SSPP (Sydney South) revised and additional documentation - (2017SSH019) Part 7

SAMPLE RECEIPT ADVICE

__ CLIENT DETAILS __

Client LAND AND GROUNDWATER CONSULTING PTY LTD

Project LG17100.01 Dillwynnia Grove, Heathcote

_	SUMMARY	OF ANALYSIS

No.	Sample ID	Mercury in Soil	Moisture Content
001	BH7/0.2-0.3	1	1
002	BH8/0.2-0.3	1	1
003	BH9/0.2-0.3	1	1

The above table represents SGS' interpretation of the client-supplied Chain Of Custody document. The numbers shown in the table indicate the number of results requested in each package. Please indicate as soon as possible should your request differ from these details . Testing as per this table shall commence immediately unless the client intervenes with a correction . SSPP (Sydney South) revised and additional documentation - (2017SSH019) Part 7

Chain of Custody Record

roject No:	LG17100.01	1	_	Lab: SGS								ANAL	YSIS R	EQUIR	RED						
roject/Site:	1-21 Dillwynnia Grove,	Heathcote, NSW	1	Lab Quote No: LGC141106060					1	4											
ampled By:	Gonzalo Parra	1.		Lab Batch									Š.								
hone:	0415 726 951			Date Resul			4 Days 1	AT - By	21/12/17			Ţ	0/0								
age 1	of 1			Sample Dis	sposal Aft								Mel								
umber of Eskie	es: 1					CONT	AINER TY	PE & PR		TIVE			K/P								
1999 - C. 19		1	10.00	Soil					Water	100			8 9								
LAB ID	SAMPLE ID	DATE	MATRIX	0.1-0.2 L		0.1-0.2 L	0.5-1.0 L			0.2-1.0L			-B d						4		9
	5444 12 22			Glass jar, unpreserved	Plastic bag	Filtered,	Amber glass, unpreserved	Glass, unpreserved	Plastic, unpreserved	Plastic, sterile	1	1	CL 17: TRH/BTEX/PAH/OC/OP / PCB/8 Metals								НОГР
1	BH7/0.2-0.3	15/12/17	Soil	1		1			1	1			x						1		
	BH7/1.5	15/12/17	Soil	1	1	1														1	lold
. 7	BH8/0.2-0.3	15/12/17	Soil	1	1				1.0000000000000000000000000000000000000				x								
	BH8/1.5	15/12/17	Soil	1	1													1		1	lold
2	BH9/0.2-0.3	15/12/17	Soil	1		-	-	-					x	-			-	-			
3		15/12/17	207.0	1			-		-					-	-	-	-	+	-		lold
	BH9/1.5	15/12/17	Soil	1	-	-					-			-	-	-	-	-	-	-	ioid
				<u></u>	-		-		-	-				-	-	_	-	-	-		-
				1	151	-			1	L	1				-			-		1	
						1					1 +						-				
						1000			S												
																			1		
		-					-			1											
	-		-	-	-		-							-	-	-		-		-	-
					-	-	-	-			-			-	-	-	-	-	-		-
		1												-	-	_	-	-	-		-
		1											1.11	-	_	-	_	-	-	-	-
		1.					-	1.	1							21					
		11						21	1							1.1			11.22		
						1.1.1.1	1.1	1			1										
							1	1										1	1.000		
				-			-		-	-				-	_		-	-			
			-			-	-	-	-			SG	SGS EHS Alexandria Laboratory								
					-	-	-	-		-										-	
									-		-	- 111								-	
			1	A															-	-	
			1	1		1											111		-		
		1	1	k													110				
						1						S	E173	87	4 (cor			1.1		
		-	1																_		
	1	-				-	-			-		ne	ceived:	15-	- Dec	-20	17		1		-
		-			-		-			-	++								-	-	
		-	-							-	+ +			-	-	-1-	-1-	1-	1	-	-
						-	in the second second		-					_	-		-	-	-	-	_
						-										1	-				
5			TOTAL	5 6		1	1.			1											
Relinquished By:		Sel - Ma				Received	By:	Bu	1 10	5/12/	12		dy Seals Int						Y	N	
Gonzalo Parra		J. mark		15/12/17		Sihr	P	apa			1		Received C						Y	N	
NAME		SIGNATURE		DATE		NAME		SIGNATU	RE	3-15	DATE	Metho	d of Shipme	ent	_			_			1
	Please send samples OC1B to	ALS																	-		
NOTES:		ALS														eb nail nail					www.lgconsult.co